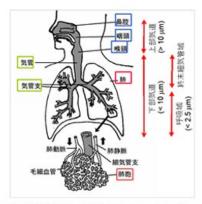


走査型電子顕微鏡を用いた PM2.5の実態把握

調查研究部

石割 隼人


PM2.5とは

1. 微小粒子状物質 (PM2.5) とは

- •大気中に浮遊している2.5µm(1µmは1mmの千分の1)以下の小さな粒子のことで、従来から環境基準を定めて対策を進めてきた浮遊粒子状物質(SPM:10µm以下の粒子)よりも小さな粒子です。
- PM2.5は非常に小さいため(髪の毛の太さの1/30程度)、肺の奥深くまで入りやすく、呼吸器系への影響に加え、循環器系への影響が心配されています。

PMの大きさ(人髪や海岸細砂)との比較(概念図) (出典: USEPA資料)

人の呼吸器と粒子の沈着領域(概念図) (出典:国立環境研究所)

PM2.5とは

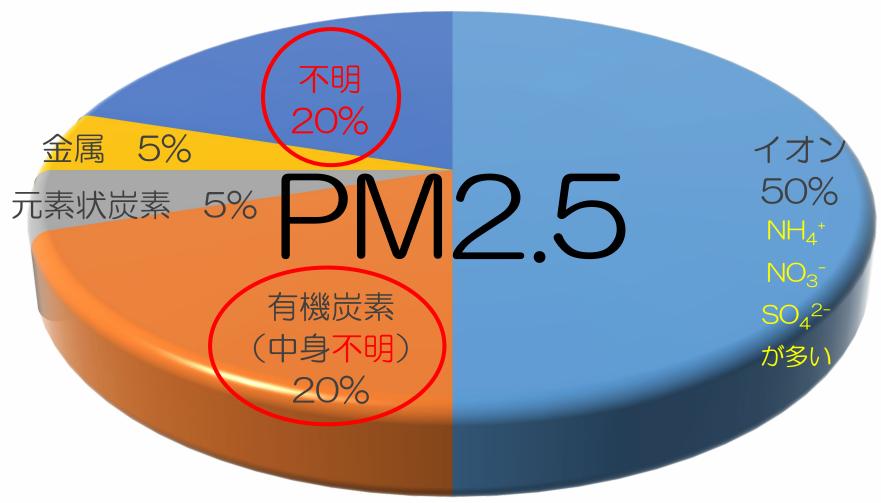
環境基準(平成21年9月9日環境省告示第33号)

項目

環境上の条件

微小粒子状物質 (PM2.5) 1年平均値が15μg/m³以下であり、かつ、1日平均値が35μg/m³以下であること。

質量濃度のみ!?


効果的なPM2.5対策を推進するため

2011年に「微小粒子状物質 (PM2.5) の成分分析ガイドライン」 2012年に「大気中微小粒子状物質 (PM2.5) 成分測定マニュアル」 を策定(環境省)

↓ (分析結果を用いてシミュレーション)

発生源の種類と地域を(間接的に)推定!

PM2.5の成分分析

不明分が多く残されている

(良くも悪くも) 単純化された全体像しかわからない

敵を知り、己を知れば百戦危うからず

我々は粒子を相手にしている! 相手のことをよく知らなければ!

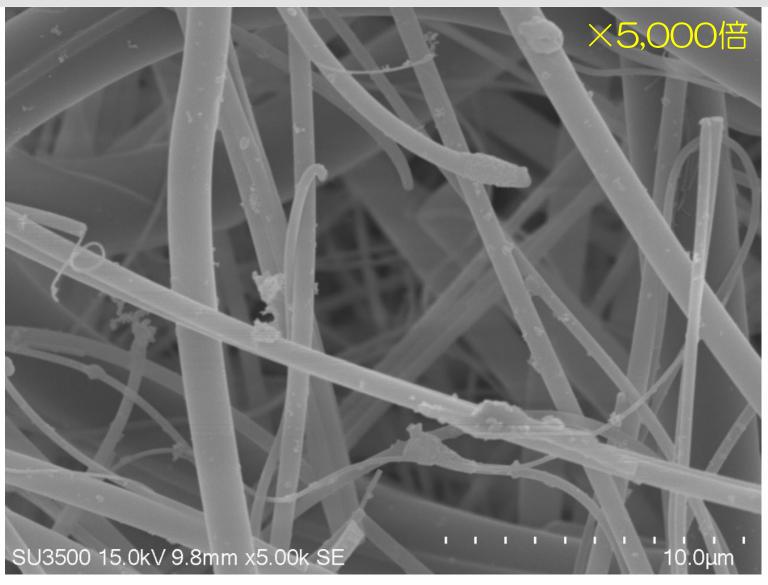
あまり情報がないなぁ…

PM2.5の発生源対策

質量濃度と一部の成分分析だけでは 有効な削減対策につながらない!?

一粒一粒観察・分析して集計すれば 発生源の種類と割合が見えてくるのでは? 現状に即した削減対策を提案できるかも!?

神奈川県環境科学センターには アスベスト対策のための 走査型電子顕微鏡(SEM)と エネルギー分散型X線分析装置(EDX)


があるじゃない!?

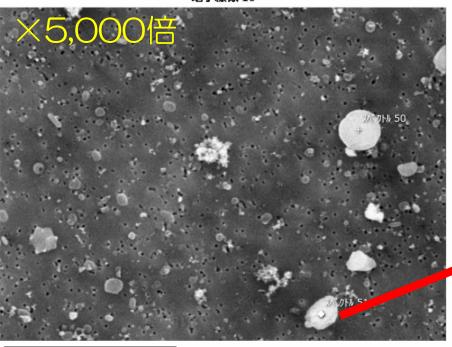
SEM&EDX

SEMで高倍率観察&EDXで元素分析

PM2.5採取済み石英ろ紙の表面SEM像

石英ろ紙の表面はスカスカ

SEM観察用PM2.5サンプリング



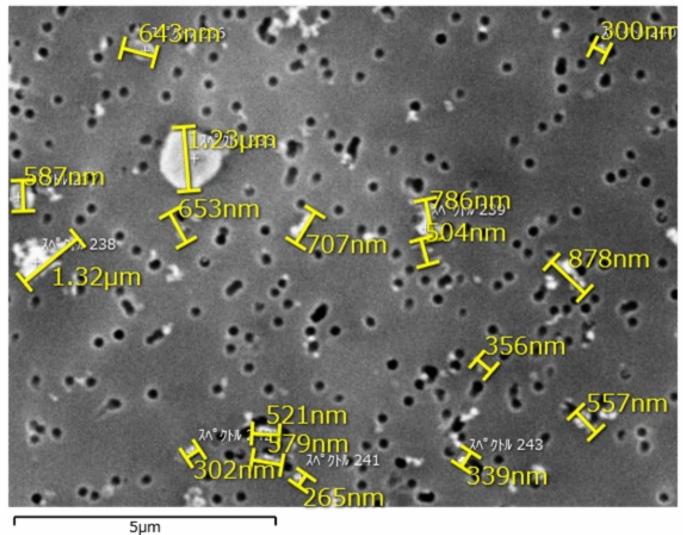
採取用ろ紙 (ポリカーボネート製:**φ** O.2 μm)

サンプリング(当C2Fベランダ) 5 L/minで24h(10:00-10:00)

観察・分析のイメージ

電子線像 16

(測定原理上水素~ベリリウムは検出されない)

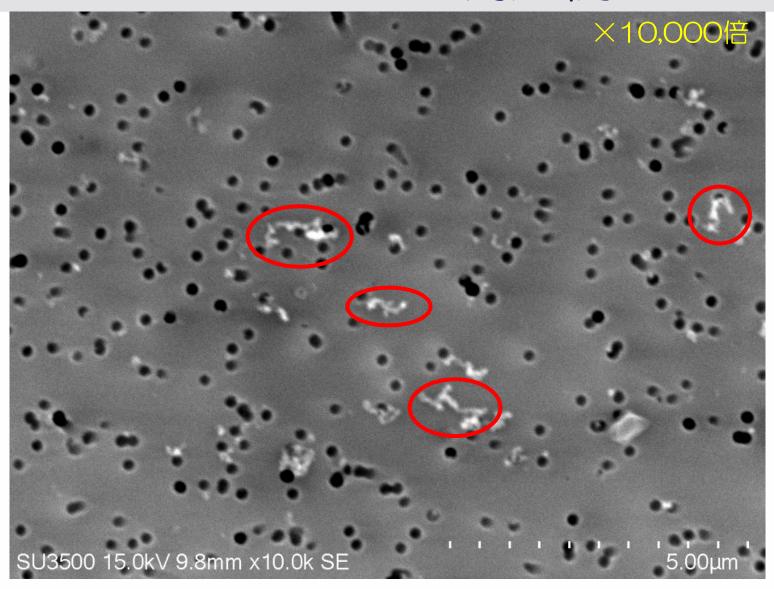


10µm

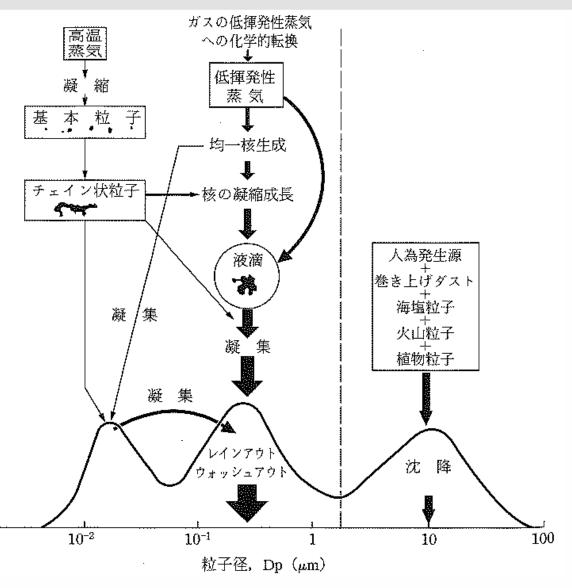
SEMで高倍率観察 & EDXで元素分析 それぞれの粒子の正体がわかる!?

観察・分析のイメージ

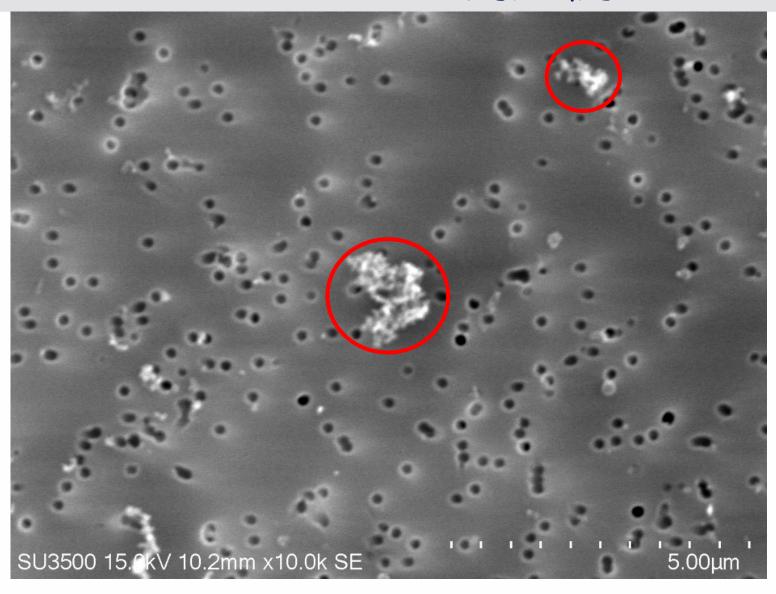
電子線像 15

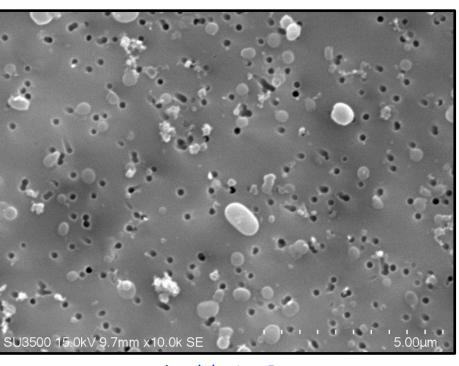


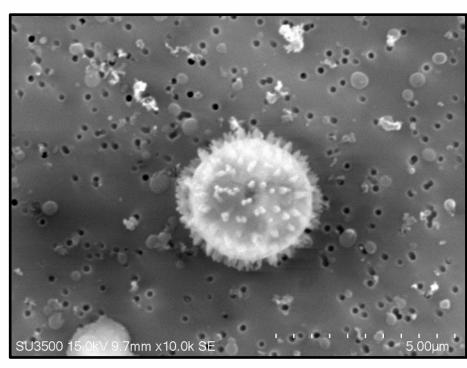
Kanagawa Prefer PM2.5粒子のSEM観察例(×10,000倍)


観察・分析のイメージ

倍率	×10.0	k
計数対象粒子	0.2~4.0	μm
画面上の5 µmスケールの長さ	13. 55	cm
画面上の視野の長さ(縦)	25. 85	ст
画面上の視野の長さ(横)	34. 50	cm
画面上の1 µmの長さ	2.71	ст
視野範囲の長さ(縦)	9. 538745387	μm
視野範囲の長さ(横)	12. 73062731	μm
視野範囲の面積	121. 4342125	μm2
視野範囲の面積	0.000121434	mm2
フィルターの有効面積	1193. 985	mm2
吸引空気量	7200000	mL
要求される定量下限値	0.1	個/mL
視野計測数 (n)	100	1日25視野くらいが限界
n視野観察時の検出下限値	0. 013656057	個/mL
n視野観察時の定量下限値	0. 045520189	

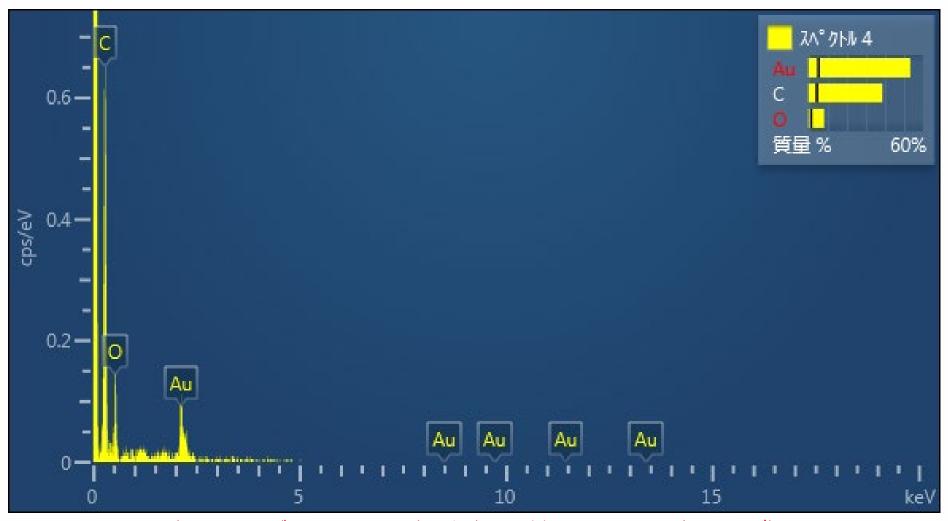

分析条件等




チェイン状粒子とは?

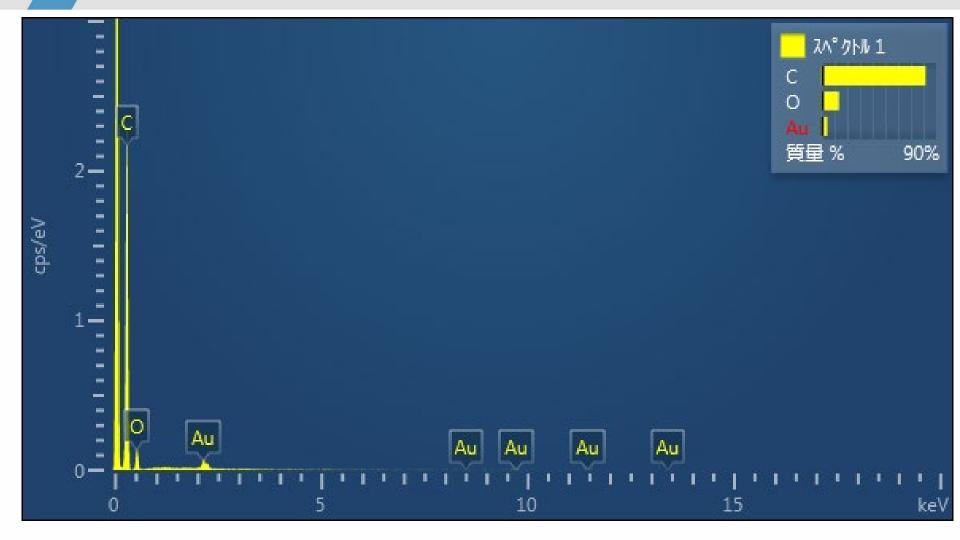
本気エアロゾル粒子の主な発生過程と除去のメカニズム

細菌!?


真菌!?

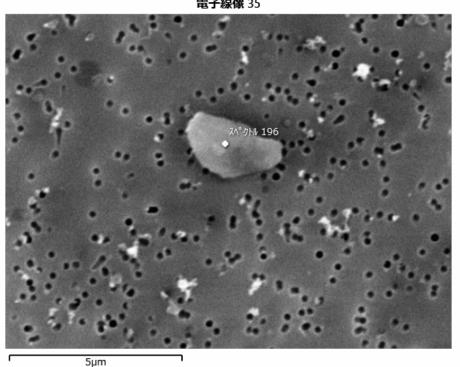
(×10,000倍)

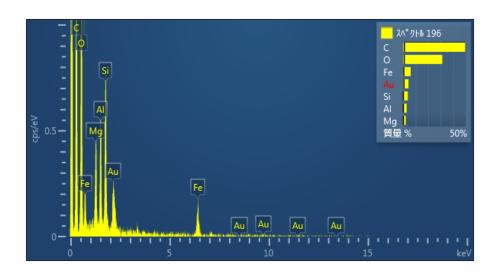
7割が水分であることに注意が必要!?


Kanagawa Prefectural Government

水分はどう扱うべきか…

(バックグラウンド(ろ紙)も拾っているだろうが)

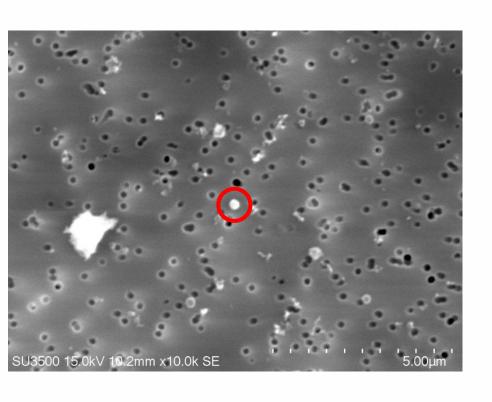

☆炭素で酸素のみしか検出されない(酸素が多い)

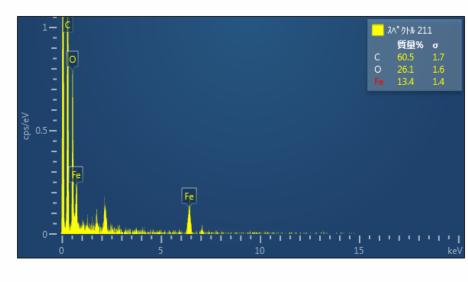


ブランク(金蒸着を2回したろ紙)

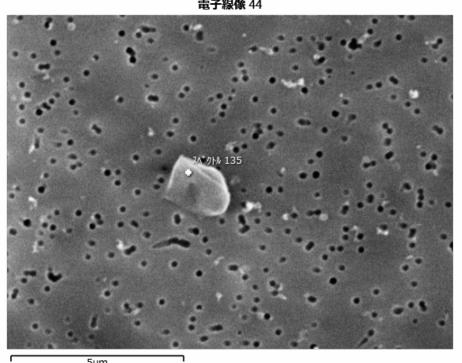
(のが小さい)

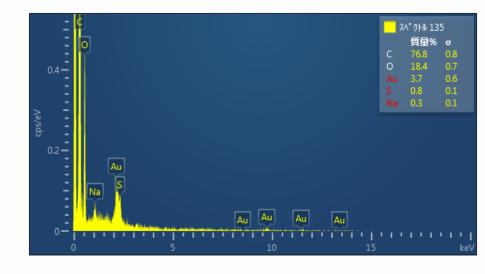
電子線像 35

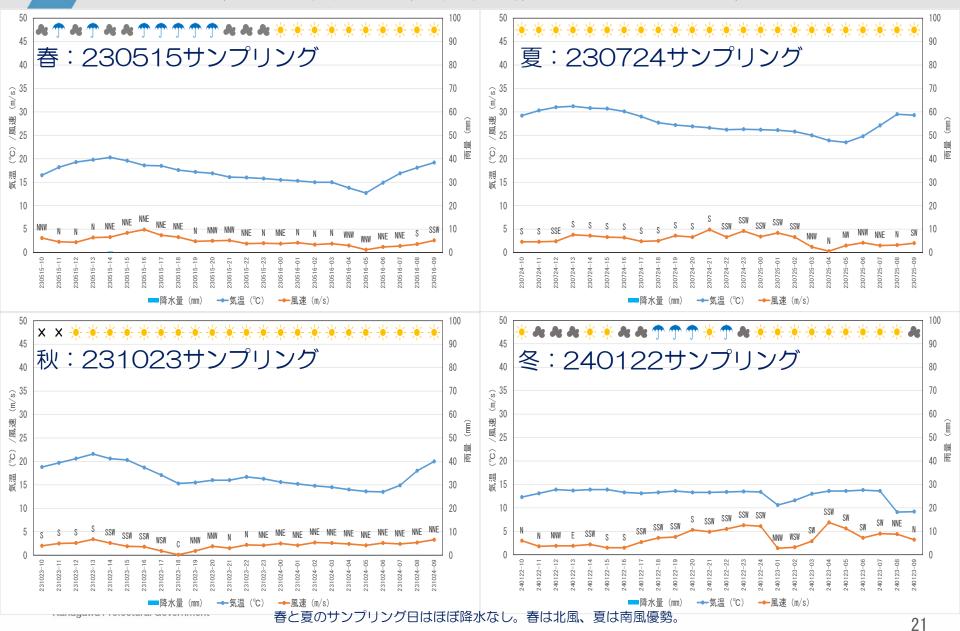




鉱物系粒子(ケイ酸塩鉱物?) (×10,000倍)


Kanagawa Prefectural Government


Si測るの大事!?



電子線像 44

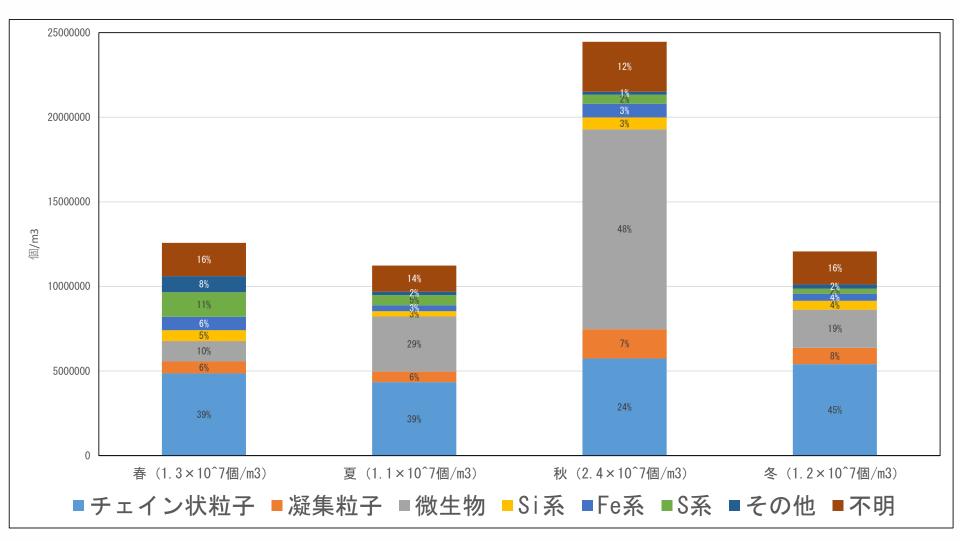
PM2.5試料採取時の気象条件 (成分分析期間(春夏秋冬)に合わせて実施)

データ集計のイメージ

230515サンプリング

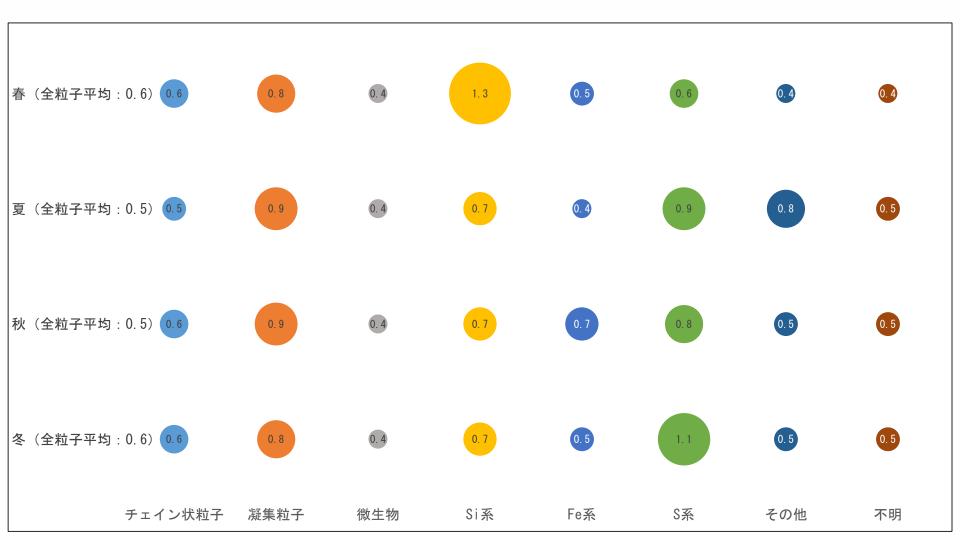
4H HIZ N	粒子01		粒子02		粒子03			粒子04			粒子05				
視野No.	球径(µm)	k径 (μm) 種類 その他の内容等 球径 (μm) 種類 その他の内容等		球径(μm)	種類	その他の内容等	球径 (µm)	種類	その他の内容等	球径(μm)	種類	その他の内容等			
1	1.88	Si系		1.7	Si系		0.436	チェイン		0.403	微生物		0.484	チェイン	
2	0. 989	Si系		0.823	Si系		0.454	微生物		0.63	不明		0.484	不明	
3	1.21	Fe系		0.812	微生物		0.64	不明		0.469	不明		0.548	チェイン	
4	2.68	Si系		0.812	Si系		0. 268	微生物		0.314	微生物		0.675	チェイン	
5	2.83	Si系		0.753	不明		0.564	チェイン		0.467	不明		0. 299	微生物	
6	2.73	不明		0.534	微生物		0.48	微生物		0. 268	微生物		0. 268	微生物	
7	0.466	微生物		1. 36	凝集粒子		1.86	凝集粒子		0.553	不明		0.438	チェイン	
8	0.778	Fe系		0.804	Si系		0.832	チェイン		0.312	Fe系		0.476	不明	
9	2.78	Si系		0.434	その他	Na	0.312	微生物		0.683	その他	Na	1.02	チェイン	
10	0.732	Si系		0.565	凝集粒子		0.398	微生物		0.31	微生物				
11	3. 24	Si系		0.594	凝集粒子		0.49	チェイン		0.391	チェイン		0.519	チェイン	
12	1.66	Si系		0.339	微生物		0.377	微生物		0.426	チェイン		0.863	チェイン	
13	0.952	Si系		0.9	チェイン		0.816	チェイン		0.547	チェイン		0.542	凝集粒子	
14	0.531	微生物		0.404	微生物		0.407	微生物		0.4	不明		1.65	チェイン	
15	2.77	S系		2.51	Si系		1.65	S系	£酸カルシウ♪	3.08	S系	t酸カルシウム	1.47	S系	£酸カルシウ⊿
16	3. 32	Si系		1.13	S系	n酸カルシウム	0.409	Si系		0. 575	チェイン		0. 247	微生物	
17	0.666	その他	Na	0.372	微生物		0.624	凝集粒子		0.76	チェイン		1.09	チェイン	
18	1.56	Si系		0.781	凝集粒子		0.519	チェイン		0.674	チェイン		0.362	微生物	
19	1.43	Si系		1.06	凝集粒子		0.701	S系	Na, Ca	0.496	その他	Na	0.554	不明	
20	0.455	S系	抗酸ナトリウム	1.03	チェイン		0.612	S系	£酸ナトリウ♪	0.819	その他	Na	0.509	Si系	
21	1.03	凝集粒子		1.54	S系	n酸カルシウム	0.518	微生物		0.468	チェイン		0.531	その他	Na
22	0.507	チェイン		0.489	チェイン		0.441	チェイン		0.668	凝集粒子		0. 434	Fe系	
23	0.688	チェイン		0.612	チェイン		0.477	チェイン		0. 299	Fe系		0.359	Fe系	
24	0.568	微生物		0.502	微生物		0.408	微生物		0.473	不明		0.361	その他	Na
25	1.16	Si系		0.709	Fe系		0.863	Fe系		0.691	その他	Na	0.99	チェイン	

ほとんどが微生物、チェイン状粒子、Si系粒子、その他は、Ti系粒子等


(燃焼由来) (鉱物?)

データ集計

						_		i		
サンプリング日		A11	チェイン	凝集粒子	微生物	Si系	Fe系	S系	その他	不明
230515	粒子数	922	356	52	88	47	58	106	70	144
	平均径(μm)	0.58	0.58	0.80	0.42	1. 27	0.46	0.64	0.44	0.42
	標準誤差	0.01	0.01	0.05	0.02	0. 12	0.05	0.05	0.02	0.02
	割合 (%)	100	38.61	5. 64	9.54	5. 10	6. 29	11.50	7. 59	15. 62
	PM2.5粒子濃度 (個/ml)	12. 59	4.86	0.71	1.20	0.64	0.79	1. 45	0.96	1. 97
	参考PM2.5粒子濃度(個/m3)	12590906	4861565	710116	1201735	641836	792053	1447545	955926	1966476
	粒子数	823	318	46	238	23	26	44	15	113
230724	平均径	0.51	0.49	0.87	0.41	0.69	0.41	0.86	0.81	0.46
	標準誤差	0.01	0.01	0.07	0.01	0.11	0.04	0.10	0.14	0.02
	割合	100	38. 64	5. 59	28. 92	2.79	3. 16	5. 35	1.82	13. 73
	PM2.5粒子濃度 (個/ml)	11. 24	4. 34	0.63	3. 25	0.31	0.36	0.60	0. 20	1.54
	参考PM2.5粒子濃度(個/m3)	11238954	4342634	628180	3250147	314090	355058	600868	204841	1543137
	粒子数	1791	421	126	865	52	59	39	13	216
	平均径	0.51	0.55	0.89	0.40	0.72	0.66	0. 78	0. 53	0.50
001000	標準誤差	0.01	0.01	0.04	0.01	0.08	0.08	0.10	0.07	0.02
231023	割合	100	23. 51	7.04	48.30	2.90	3. 29	2. 18	0.73	12.06
	PM2.5粒子濃度 (個/m1)	24. 46	5. 75	1.72	11.81	0.71	0.81	0. 53	0. 18	2.95
	参考PM2.5粒子濃度(個/m3)	24458040	5749210	1720666	11812510	710116	805709	532587	177529	2949713
240122	粒子数	884	396	71	165	38	31	22	18	143
	平均径	0.55	0. 57	0.83	0.38	0.72	0.46	1.09	0.52	0.47
	標準誤差	0.01	0.01	0.05	0.02	0.11	0.04	0. 15	0.07	0.02
	割合	100	44.80	8.03	18.67	4. 30	3. 51	2.49	2.04	16. 18
	PM2.5粒子濃度 (個/ml)	12.07	5. 41	0.97	2. 25	0.52	0.42	0.30	0.25	1.95
	参考PM2.5粒子濃度(個/m3)	12071975	5407808	969582	2253253	518931	423339	300434	245809	1952820


春と夏と冬で計数対象粒子数はほぼ変わらず。 秋は計数対象粒子数は春、夏および冬のほぼ倍。

データ集計

PM2.5粒子の種類別(数)割合(%)

データ集計

PM2.5粒子の種類別平均粒径(µm)

まとめ

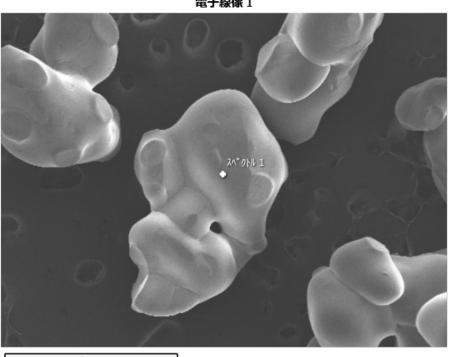
- 100視野中(ろ紙全体の約1/100,000) に粒子が1,000個存在すると 換算濃度:約14,000,000個/m3 平均粒子径(長):0.5~0.6 μm 14,000,000×14.4 ÷ 200,000,000個/day 吸い込んでる!?
 (成人の呼吸量:14,400 L (14.4 m3)/day)
- ・春、夏、秋および冬で平均粒径ほぼ変わらず。
- 大半がサブミクロン粒子!?
- チェイン状粒子の数は春、夏、秋および冬でほぼ同じ。粒径もほぼ変わらず。
- ・凝集粒子の割合は春、夏、秋および冬でほぼ同じ。粒径もほぼ変わらず。
- ・微生物の濃度・割合は各季節間で変動が大きい。種構成が気になるところ… (次世代シーケンサーや定量PCRでざっくり分かるか?)。粒径は変わらず。
- ・微生物が思いの外多い

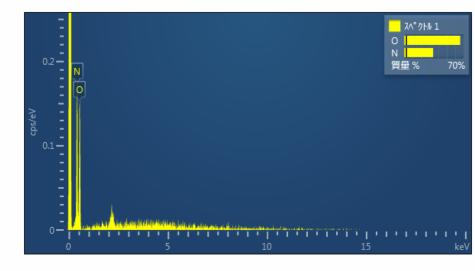
都市部の大気中微生物濃度が多いという知見があるが、人間活動に伴うもの? 規制は難しい?(基準を厳しくしても対応できない?)

先行研究によると、蛍光顕微鏡分析による総細菌量推定は10³~10⁷細胞/m3/定量PCRによる総細菌量推定は10~10⁶細胞/m3

まとめ

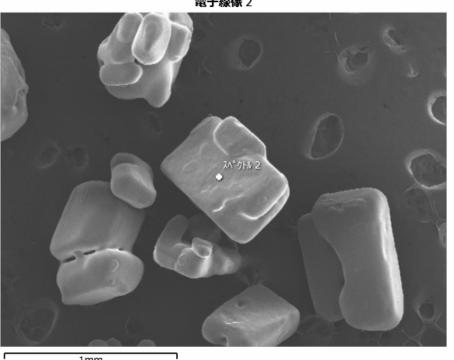
• 焼却に伴うチェイン状粒子が多い

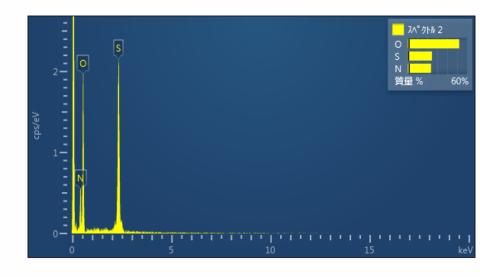

人間はもの燃やしすぎ? 火力発電、ゴミ焼却・野焼き、自動車・船・飛行機等の内燃機関、ボイラー、ガスコンロ、ガス給湯器、etc.… もっと減らせないか?



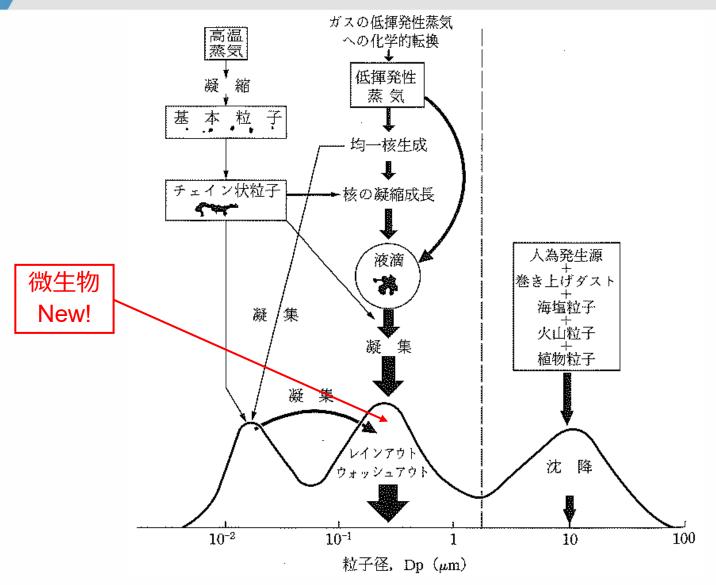
燃やす量自体を減らすか、チェイン状粒子を環境中に排出させない工夫が必要!

- ・S系粒子(≒硫酸塩)は季節によって<mark>陽イオン</mark>が異なる?春はほぼ硫酸ナトリウムだが、夏は硫酸カリウムも認められ、秋と冬については硫酸カルシウムが支配的(冬は硫酸亜鉛が含まれていたことも)。
- ・窒素化合物(アンモニウム塩、硝酸塩等)が見当たらない 粒子がさらに小さいか、サンプリング中に潮解している? 他の粒子に吸着しているのかも?


電子線像1



1mm


電子線像2

1mm

チェイン状粒子とは?

大気エアロゾル粒子の主な発生過程と除去のメカニズム

固定発生源とSPM=PM2.5

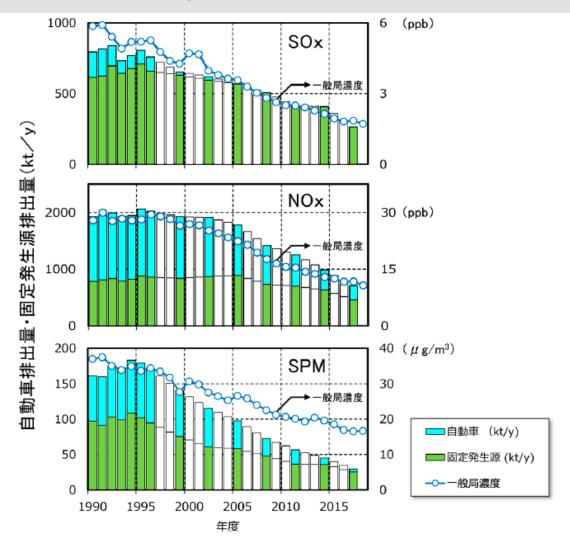
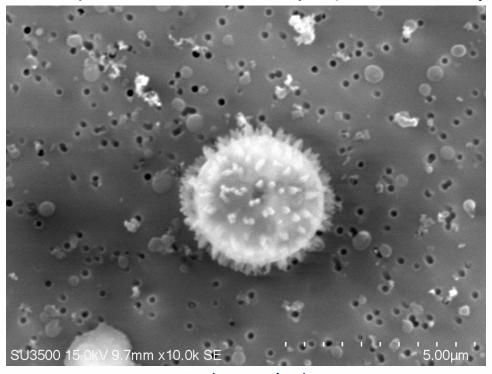


図42 全国の固定発生源と移動発生源の大気汚染物質排出量と SO₂、NOx、SPM の全国平均濃度の経年変化 (作成: 小林伸治、伊藤晃佳)

若松伸司:大気環境 むかし・いま 一第2 講 大気環境常時監視データの活用に向けて一,大気環境学会誌,58,A153-A180(2023) 31

成果発表

★学会発表


- 第61回大気環境学会年会(令和2年9月(誌上開催))PM2.5中の微生物を走査型電子顕微鏡で観察してみた
- 第64回大気環境学会年会(令和5年9月)走査型電子顕微鏡を用いたPM2.5の実態把握
- 第65回大気環境学会年会(令和6年9月)走査型電子顕微鏡を用いたPM2.5の季節変動観察
- ・第66回大気環境学会年会(令和7年9月) シルバーメンブレンフィルターを用いたPM2.5の詳細元素分析 ~チェイン状粒子と微生物類を主役に据えて~

★その他の発表

・第51回環境保全・公害防止研究発表会(令和6年11月) 走査型電子顕微鏡を用いたPM2.5の実態把握

炭素および酸素に着目した PM2.5粒子の詳細元素分析

調查研究部

○石割 隼人・菊池 麻希子・小野寺 薫平

ご清聴ありがとうございました!

ぜひご意見等お願いします!

$$m(\underline{})m$$