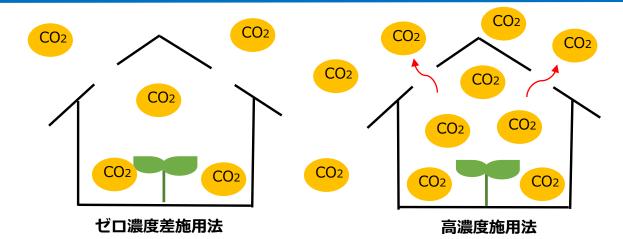

CO₂施用について

1 目的

温室内のCO₂濃度 を高めることで、 光合成の速度を高 め、増収を目指し ます。

2 CO2ガス発生源と制御方法の特徴

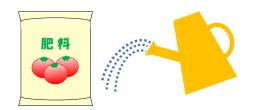

評価: ◎ > O > △ > x (良 > 不良)

CO2ガス 発生源	経費		取り扱い			効果	
	導入費	維持費※	自動化	補給	安全性	確実性	簡易加温
液化炭酸ガス	0	Δ	0	0	0	0	×
LPガス燃焼式	Δ	0	0	0	Δ	0	0
灯油燃焼式	0	0	Δ	Δ	0	0	0

*CO2 1 kg当たりの価格:液化炭酸ガス 300円/kg、LPガス 75円/kg、灯油 39円/kg (平成29年8月〜平成30年7月の神奈川県内における平均価格) (五訂 施設園芸ハンドブック一部改変)

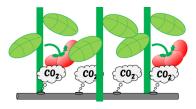
種類	制御方法	メリット	デメリット	
タイマー制御	タイマーでCO₂施用の時間帯、 装置の動作を制御する。	分価である	CO₂濃度を一定に保つことが難しい。	
濃度制御	センサを用いて測定したCO ₂ 濃度に応じてCO ₂ 発生装置の 稼働を制御する。	ダイマー制御より	測定位置の検討、定期的 なセンサの校正、更新が 必要。	
統合環境制御機器よる制御	統合環境制御機器を用い、 CO2濃度に加えて換気、温度、 日射量等の条件に応じてCO2 発生装置の稼働を制御する。	タイマー制御、濃 度制御よりも効率 的。	導入コストが高い。	

3 CO₂施用方法について



温室内CO2濃度を外気濃度と同等の 400ppm程度に維持する。換気窓が 開いた状態でも効率的に施用できる ため、無駄がない。 温室内CO2濃度を外気濃度以上の 400~1000ppm程度にする。光合 成速度はより高まるが、換気によ りCO2を損失する可能性が高くなる。

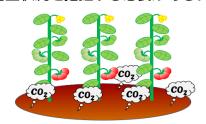
4 CO2施用効果を高めるためのポイント


① 施肥量及び潅水量の検討

・CO₂施用による増収に応じた施肥量 及び潅水量の増加を検討する。

③ 局所施用の検討

・換気時には、チューブやダクトを用いて葉の近くからCO2ガスを供給する 局所施用が有効になる。


② 湿度条件の検討

- ・光合成に適した湿度条件となるよう ミスト発生装置の利用など湿度管理 をする。
- ・高湿度条件が病害発生に影響を及ぼ す可能性があるため防除に留意する。

④ 土壌有機物由来のCO2の把握

・土耕栽培では、土壌有機物由来のCO₂ 発生状況を把握する必要がある。

