城ケ島沖ブイにおける表層流の特徴

岩田静夫・渡部 勲・石戸谷博範・清水顕太郎

Surface Current Features at Buoy system mooring off Jyogashima at the head of Miura-Peninsula

Shizuo IWATA[#] • Isao WATABE[#] * Hironori ISHIDOYA[#] * * • Kentaro SHIMIZU[#]

ABSTRACT

Current records obtained at 3m depth of the buoy system mooring off Jyogasima during the period from 6 Apr. 1995 to 31 Oct.1996 are analyzed. The existence of periodical current fluctuations whose period are about 3, 5 days and semidiurnal period are dominant.

The current directions are more frequent north-westward to northward than other directions. Especially, the current directions over at speeds of 75 cm/sec are mostly north-westward to northward.

These currents are closely related to occure an abnormally westward strong current, the Kyucho of "SAKISIO", along the west coast causing extensive damage to fishing set-nets. These suggests that the monitorring currents measured by the buoy system off Jyogasima is possible to forecast the occurrence of the Kyucho.

はじめに

相模湾は太平洋に面した開放型の湾であり,沖合を流 れる黒潮変動は湾内の海況のみならず,カツオ,マグロ 類,シイラ,アジ,サバ,イワシなどの暖水系回遊魚の 来遊に強く影響する。1988 年から 1991 年にかけて,県 水産課および漁業者はカツオ,シイラ,マグロ類などの 蝟集と操業の効率化をねらって,相模湾内の数ケ所にF RP製と竹材などを使った浮魚礁を設置した。その結果, これら魚類や稚魚は黒潮変動に伴う沖合水の流入により, 浮魚礁に蝟集し(工藤・岩田 1992¹⁾),それら魚類を漁 獲するための漁場探索に要する経費と時間が大幅に削減 できることが判った。

この結果をもとに,県水産課では,海況変動と魚群行動をモニターするとともに,両者の関連性を明らかにし, 釣り,定置網などの沿岸漁業の管理の基礎データの蓄積, 回遊性魚類の蝟集効果と操業の効率化,急潮発生のモニ ターと予報による漁業防災対策の確立などを目的に、 1995年4月に電磁流速計と水温計を取り付けたプイを 城ケ島南西7.7km沖に設置した。

湾東部の城ケ島沖で北向流が強くなると,1~2日後 1997 1 16 受理 袖水研業績 96 15

1997.1.	10 文庄	竹小加未頑	30
脚注#	神奈川県	水産総合研究所	ŕ
# #	防災科学研	研究所	
# # #	相模湾試験	験場	

に相模湾奥から西部沿岸で西向流が強くなり,時には急 潮が発生することがある(松山・岩田 1977²⁾,岩田 1986³⁾, IWATA and MATSUYAMA 1989⁴⁾)。ブイ付近は、相 模湾奥から西部海域の流れ,特に急潮を予報する場合の キー・ポイントである。

ブイで測定された流れと水温記録は,1時間毎に水産 総合研究所に電送され,収録される。収録されたデータ から流れ・水温の日報を作成し,Fa×により漁業者並 びに関係機関に伝達してきた。これまでブイで強い北向 流が観測されたときには,定置網の防災の参考資料とし て「急潮注意報および警報」を出してきた。

さらに「急潮予報及び警報」の精度向上と,相模湾の 海況変化を的確に捉えるためには,ブイロボットでの流 れの特性を捉える必要がある。これまで得られた流れの データから平均的な流況特性,ブイでの強流と平塚沖波 浪観測塔の流れとの関連性などについて検討した。

観 測

1995 年3月に鋼製の大型ブイの海面下3mに電磁流 速計(アレック電子KK)を取り付け,城ケ島南西4.2マ

Fig.1 The locations of the mooring buoy station (B),the set-net station (E and K), and the wave measurements tower (H) and bottom topogr aphy

イル沖の水深約750m に設置した(Fig.1のB)。4月6 日から流向・流速,水温の測定を10分間隔で開始し, 1時間毎に6回分のデータが水産総合研究所に電送され, ハードデスクに収録される。収録されたデータは,月毎 のデータ表と時系列変化図および日毎のデータ表と時系 列変化図に整理され,出力される。

漁業者,遊漁漁業者,関係者は流れや水温などのリア ルタイムの情報について要望が高い(岩田 1991⁵⁾)。 この要望に対し1測点ではあるが,流れ・水温の経時変 化図を毎日作成し(Fig.2),Faxにより伝達してきた。 測定開始の'95年4月6日からこれまでに大きなトラブ ルもなかった。測定された流れ,水温のデータから'95 年4月6日~'96年9月30日の流れのデータについて 解析する。

果

結 1.流れの変動特性

1例として、'96年9月1日~30日に10分間隔で得られた流れの記録から、生の流れのベクトルと25時間の移動平均を施し、日周期よりも長い周期のベクトルの時系列変化(以下長周期変化)をFig.3のEX-1と2に示す。図に示されたNは、流れが北向きであることを表す。Fig.3のEX-3は、流れを東西成分と南北成分に分けた時系列変化である。図に示された細線は、生の流速変化、太線は長周期変化である。

Fig.2 Time variations of current and temperature are recorded by the buoy system off Jyogasima during t he period from 17 to 18 Sep. 1995.

Fig.3 Time series of current vectors (EX-1),25-hourly low passed current vectors (EX-2),and hourly values(fine lines) and 25-hr mean values(thick lines) of the eastward and north ward components (EX-3) a t a depth of 3m for the buoy station during the period from 1 to 30 Sep 1996.

生のベクトル図をみると,流向・流速は短時間に変化 していることが判る。流向に注目すると,9月1日~13 日にかけて約20cm / sec以下の南向流が幾らか観測され ているものの,北向流が卓越している。14日~22日には 流向は反転し,南向流が卓越しているが,23日から再び 北向流に反転し,60cm / sec(約1.2ノット)以上の強流 がみられる。

長周期の流れは (Fig.3のEX - 2), 14日頃~22日に 相模湾外へ流出する南向流がみれるものの,湾内へ流入 する北向流が卓越している。流速は小さく概ね20cm / sec以下であるが,23日~24日と29日に30cm / sec(約 0.6ノット)を越える北向流がみられる。

東西成分と南北成分の時系列変化をみると(Fig.3の EX-3),数日周期の変化に数時間から約半日の潮汐 周期の変化が重なっている。生の流速記録の変化に注目 すると,数時間以下の周期の短い変化が認められるもの の,約半日の潮汐周期の変化が図に鮮明に示されている。 潮汐周期の振幅は南北成分の方が東西成分に比べて大き く,25日と28日~29日には振幅30cm以上の値がみら れる。すなわち,潮汐周期の変化は,東西成分(岸に直 角)よりも南北成分(岸に平行)の方が卓越しているこ とを示している。

ここで,流速変動の時間スケールを知るために,流速 変動が大きい'96年8月1日から10月21日の83日間につい て,スペクトル解析(MEM法による)を行った。Fig. 4に卓越流向である南北成分のパワースペクトルを示す。 約半日の周期帯に鋭いエネルギーのピークがみられる。 約1日の周期帯にもピークがみられるが,エネルギーレ ベルは約半日に比べて1桁低い。これら変動は周期から 考えると,潮汐によるものであり,半日周潮の変動が日 周潮よりも卓越していることを示す。3日前後と5日前 後の周期帯にもピークがみられるが,エネルギーレベル

SPECTRUM OF FLOW CURRENT S/N COMP.

Fig.4 Power spectrum of the northward components during the period from 1 Aug to 21 Oct 1996

は後者の方が前者よりも高く,5日周期の変動が卓越していることを示す。これら周期の変動は,相模湾東部の陸棚上で観測された流速変動の周期にほぼ一致する(岩田 1986³⁾)。

2.流速別・流向別頻度分布からみた流れの特徴

'95年4月6日~'96年10月31日に10分間隔で測得され た81,864個の流れの記録をもとに、流向別の頻度分布を

Fig.5 Distribution of frequencies of current spee d and direction during the period from 6 Apr 1 995 to 31 Oct 1996.

求めた(Fig.5)。Fig.5から明らかなように,陸棚に 沿って湾内へ流入するNW流からN流が卓越している。 相模湾央に向かうSSW流からW流は,少ないことが判る。

流速を25cm / sec (0.5 ノット)以下,25~50cm / sec (0.5~1.0 ノット),50~75cm / sec (1.0~1.5 ノット),
75cm / sec (1.5 ノット)以上に分け、流向の頻度を求めた(Fig.6)。流速25cm / sec以下の流れは,全体の約82.2%を占める。Fig.5と同様にNW流からN流が卓越し,SW流からW流は少ない。25~50cm / secの流れは,
全体の約16.4%を占める。卓越流向は25cm / sec以下と同様にNW流からN流であり,より明確に示されている。50~75cm / secの出現率は,約1.2%である。NW流からNNW流が卓越している。南向流(SSE流からWSW流)は,極めて少なく,7回観測されたのみである。

75cm / sec以上の流れは,僅かに0.2%(170回観測) であり,流向はWNW流からNW流(北向流)のみで, E流からW流は1回も観測されなかった。

80 cm / sec (1.6 ノット)の北向流の発生頻度は少なく, '95年8月12日,9月17日,11月12日~14日,96年7月 4日,8月26日~27日,9月24日~25日,9月28日~29 日の合計7例である。

平塚市の海岸から約1km沖の波浪観測塔でも超音波流 速計により、表層流れが観測されているが、'95年11月 は流速計のトラブルにより、流れの記録が得られなかっ た。図には示さなかったが、波浪観測塔での流速はブイ に比べて弱く,'96年10月1日~12月31日に10分間隔で 欠測なく得られた流れの記録をみると,25cm/sec以下 が全体の約98.3%を占め,25cm/sec以上の流れは僅か に1.7%を占めるに過ぎない。

水槽実験によると、流れが強く定置網の揚網不能な流速は 約30cm / secである(石戸谷からの私信)。この流速を基準に 波浪観測塔の流速の頻度を見ると,30cm / sec以下の流れは全 体の99.7%を占め,それ以上の流れは僅かに0.3%である。

波浪観測塔では'95年9月14日9時~12時に約35m/sec の西向流,9月18日11時~13時および'96年8月28日0時 ~3時に35~40cm/secの西向流,9月24日5時~19時に 45cm/secの西向流が観測され,ブイで80cm/secの北向流 が観測された6例のうち4例が1~2日後に波浪観測塔で 強い西向流が起こったことが判る。このことから、城ケ島 沖における80cm/sec以上の北向流と相模湾沿岸の反時計 回りの強流発生との関連性が伺われる。

100 cm / sec(2 ノット)以上の北向流は,'95年9月 17日に2回,11月12日~13日に2回,'96年7月4日に 2回観測された。特に、'95年9月17日21時に観測史上 最大の106 cm / secの北向流が観測され,後述するように, この強流が18日早朝に起こった江ノ島定置網の大被害を 引き起こしたと考えても間違いではない。

Fig.6 Distribution of frequencies of current direction of every current speed scales during the period from 6 Apr 1995 to 31 Oct 1996.

まとめ

城ケ島沖ブイでの流れは,数日周期の変動に顕著な半 日周期(潮汐周期)の変動が重なっている。流向の頻度 をみると、岸ー沖方向よりも大陸棚に平行な流れが多く、 相模湾から流出する南向流よりも湾内に流入する北向流 が卓越する。

流速25cm / sec以下のが流れが全体の約82%,25~50 cm / secの流れは約16%を占め,湾内へ流入する北向流 が卓越する。50~75cm / secの出現率は約1.2%で,南向 流は極めて少ない。

75cm / secになると、出現率は僅かに0.2%である。南 向流は1回も観測されず、湾内に流入する北向流のみで ある。

これまで、ブイで流速80cm / sec以上の北向流が観測 された1~2日後に、平塚沖波浪観測塔で西向流(サキ シオ)が強くなる場合が多かった。城ケ島沖の大陸棚上 における北向流は,湾内の反時計回りの循環流に深く関 わっており(岩田 1986³⁾, IWATA and MATSUYAMA 1989⁴⁾),ブイにおける強い北向流は、湾内の反時計回り の循環流を発達させる可能性が高いことを示している。

ブイでの観測が開始されてから、定置網に甚大な被害

を引き起こした急潮が,'95年9月18日と'96年9月23日 に起こった。2例ともに大型台風が相模湾沖を通過後の 波浪が弱くなった時に起こり,いずれも定置網が被害を 受ける10数時間前にブイで75cm / sec以上の北向流が観 測された。

前者の場合,台風通過直後の9月17日21時に観測史上 最大の106cm/secの北向流がブイで観測された。この強 流発生の10数時間後の9月18日朝に,ブイから北北西約 20km設置された江ノ島定置網が急潮により被害を受けた。

後者の場合も同様に,台風通過直後の9月22日から北 向流が強くなりはじめ,23日早朝に流速70cm / sec以上 になった。23日午後に湾西部の米神漁場で急潮が発生し, 定置網が流失した。米神漁場から1.5km南の江之浦の流 速記録をみると,23日15時頃から約60m以浅で50cm / sec(1.0ノット)以上の南向流が観測され,16時頃に最 大流速約75cm / sec(1.5ノット)に達し,数時間後に弱 まった。急潮は数時間続く現象で,気象でいう突風のよ うな現象が海で起こり,定置網の大被害を引き起こすこ とを示している。

これまで,ブイで得られる流れのデータを常時モニ ターし,約70cm / sec以上の北向流が観測されると直ちに 急潮発生の注意報を,90cm / sec以上になると急潮警報 を発してきた。急潮注意報と警報を発した後に湾内の反 時計回りの循環流は強くなることが,平塚観測塔の流れ の記録および定置網漁業者からの聞き取りなどから明ら かにされた。このことはブイでの流れをモニターするこ とにより,急潮発生の予報が可能であることを示唆して いるが,どこで急潮が発生するかは分からない。

今後の研究課題として,相模湾内に流れの観測点を増やし,ブイでの流れの変動との関係を究明することがよ り精度の高い急潮予報につながると考えている。

謝辞:流れ・水温の連続観測に理解を示し,流速計をプ イに設置し,テレメータによる流れ・水温などの収集に ご尽力された水産課の関係者各位にお礼申し上げる。

文 献

- 1) 工藤孝治・岩田静夫(1992): 相模湾の浮魚礁にお けるシイラ漁況と海況との関係. 1992年度水産海洋学 会発表大会講演要旨集,
- 2) 松山優治・岩田静夫 (1977): 相模湾の急潮 (). 水産海洋研究会報, 30, 1-7.
- 3)岩田静夫(1986):相模湾の海況の短期変動.神奈川県水産試験場研究論文集(3),1-.
- 4) IWATA,S and M, Matsuyama(1989) : Surface circulation of Sagami Bay - the response to variations of the Kurosio Axis. J. Oceanogr. Soc. Japan,45,310-320.
- 5)岩田静夫(1991):沖合・沿岸域における漁海況情 報.海と空,66,333-346.