令和5年度化学物質調査の結果について

令和6年7月 神奈川県環境農政局環境部

目 次

Ι	ダイオキシン類常時監視等	頁
4	᠘ ₹υ∔Ε₩	
1	114 4 1111 1211 1211	-1
		1
	/ HF3	1
	1 NATION OF THE PROPERTY OF TH	1
	(a) Martin	1
	/ / CANAGE ARTA	1
		3
	ウ 土壌・地下水調査結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
_	AT We II See at all attricts	
2	1 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	(1) 調査の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	(2) 調査結果	7
	ア 目久尻川調査結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	イ 重点監視調査結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
Π	化学物質環境モニタリング調査(水域環境調査)	
1		9
	(1) 目的	9
	(2) 調査対象物質	9
	· / // · · ·	10
	· · · · · · · · · · · · · · · · · · ·	10
2	2. 調査結果	10
	(1) 水質調査	10
	(2) 底質調査	1 1
(}	参考資料) 水域調査対象物質の概要について ・・・・・・・・・]	1 2

I ダイオキシン類常時監視等

県、国並びにダイオキシン類対策特別措置法の政令市である横浜市、川崎市、相模原市及び横須賀市は、県内におけるダイオキシン類による汚染状況を把握するため、ダイオキシン類対策特別措置法第 26 条に基づく調査を実施した。また、県では、過去に環境基準値を超えた地点等における汚染状況確認調査を実施した。

1 常時監視調査

(1) 調査の概要

ア 目的

ダイオキシン類対策特別措置法に基づき、ダイオキシン類による環境汚染の実態を把握する。

イ 調査内容及び地点数

大気、公共用水域(水質及び底質)及び土壌、地下水について調査を行った。

区 分		常時監視調査地点数	頻度
大 気		2 2 地点	年2回
公共用水域	水質	4 5 地点	年1回
公共用小坝	底質	3 2 地点	年1回
土壤		2 3 地点	年1回
地下水		26地点	年1回
合計		148地点	_

(2) 調査結果

ア 大気調査結果

(7) 調査時期(1週間連続採取を実施)

8月:令和5年8月17日~8月24日(鎌倉市役所での調査のみ8月22日~8月29日) 1月:令和6年1月18日~1月25日(南足柄市りんどう会館のみ2月1日~2月8日)

(イ) 調査結果 (表1、図1及び図2)

○ 常時監視調査

測定を行った 22 地点のうち、環境基準の評価対象となる 20 地点すべてで大気環境基準 (0.6 pg-TEQ/m³ 以下)を達成した。

また、年間の最大値(年 2 回測定の平均値)は 0.016 pg-TEQ/m³、最小値(年 2 回測定の平均値)は 0.0032 pg-TEQ/m³、平均値は 0.0081 pg-TEQ/m³ であった。

年平均値は平成 18 年度以降減少傾向にあり、環境基準に比べて低いレベルで推移している。

※ 調査結果は毒性等量 (TEQ) (単位としては「-TEQ」) として表示している。これは、各異性体の実測濃度に毒性等価係数 (TEF) を乗じ、それらを合計したものである。以下同じ。

表 1 大気常時監視調査結果

No	実施機関	市町村名	測定地点	年平均値 pg-TEQ/m ³
1		平塚市	平塚市博物館	0.0074
2		鎌倉市	鎌倉市役所	(0.032)
3		藤沢市	藤沢市御所見小学校	0.0097
4	県	秦野市	秦野市役所	0.0053
5		厚木市	厚木市役所	(0.013)
6		南足柄市	南足柄市りんどう会館	0.0060
7		箱根町	社会教育センター	0.0032
8			中区本牧局	0.0079
9			保土ケ谷区桜丘高校局	0.0070
10	横浜市	横浜市	磯子区総合庁舎局	0.0073
11	(関係川	供供川	港北区総合庁舎局	0.0068
12			緑区三保小学校局	0.0076
13			泉区総合庁舎局	0.0063

No	実施機関	市町村名	測定地点	年平均値 pg-TEQ/m ³					
14			大師測定局	0. 012					
15	川崎市	川崎市	中原測定局	0.0090					
16			生田浄水場	0.0082					
17			相模原市役所	0.012					
18	相模原市	相模原市	相模 百亩 相模 台測 定局 <u>相模 台</u> 測 定局						
19	阳保原川	作保房川	津久井測定局	0.0088					
20			相武台中学校	0. 016					
21	横須賀市	横須賀市	追浜行政センター	0.0070					
22	(世) (1) (1)	(世) (1) (1)	久里浜行政センター	0.0067					
	最大値								
	最小値								
	平均值								

(環境基準: 0.6pg-TEQ/m³)

※ () 内数値は、公定法によらない分析法で算出した測定値を示す。

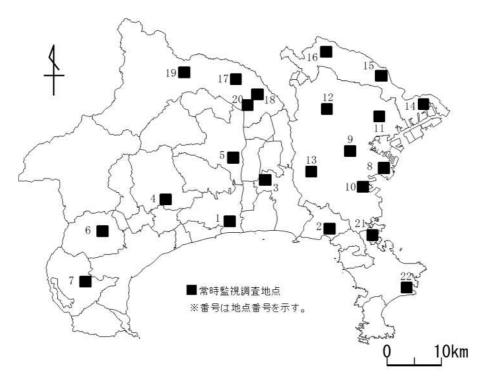


図1 大気調査地点図

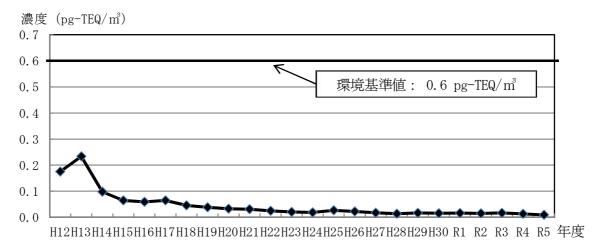


図2 大気の常時監視調査地点の年平均値の推移

イ 公共用水域調査結果

(7) 調査時期(試料採取日)

河川:令和5年8月22日~10月20日

湖沼:令和5年10月2日、19日

海域:令和5年8月2日、9月26日

(イ) 調査結果 (表2、図3及び図4)

水質については、すべての地点(45 地点)で水質環境基準(1 pg-TEQ/L 以下)を達成していた。最大値は 0.35 pg-TEQ/L、最小値は 0.022 pg-TEQ/L、平均値は 0.079 pg-TEQ/L であった。

底質についても、すべての地点(32 地点)で底質環境基準(150 pg-TEQ/g 以下)を達成していた。最大値は 22 pg-TEQ/g、最小値は 0. 20 pg-TEQ/g、平均値は 4.7 pg-TEQ/g であった。

なお、河川(水質)の常時監視を実施している地点については、平成 12 年度から 令和5年度までの平均値の推移を見ると、環境基準に比べて低いレベルで推移してい る。

表 2 水質及び底質調査結果一覧

No	測定機関	水均	或名	地点名	水質 (pg-TEQ/L)	底質 (pg-TEQ/g)	No	測定機関	水域名	地点名	水質 (pg-TEQ/L)	底質 (pg-TEQ/g)
1			三沢川	ーの橋	0.098	_	25		金目川	花水橋	0.049	0.42
2	川崎市	多摩川	二ヶ領本川	堰前橋	0.032	-	26		葛 川	吉田橋	0.063	0.21
3			平瀬川	平瀬橋(人道橋)	0.041	_	27		中村川	押切橋	0.041	0.40
4		多图	肇川	田園調布取水堰(上)	0.070	0.55	28		森戸川	親木橋	0.10	-
5	国土交通省	鶴り	3 111	臨港鶴見川橋	0.087	12	29	神奈川県	酒匂川	飯泉取水堰(上)	0.048	_
6		性与う	せい	亀の子橋	0.078	0.30	30	仲宗川県	酒匂川	酒匂橋	0.034	-
7		入范	IJI	入江橋	0.049	4.1	31		山王川	山王橋	0.048	-
8		帷子川(カ	」タヒ゛ラカ゛ワ)	水道橋	0.043	2.3	32		早川	早川橋	0.029	_
9	横浜市	大	到川	清水橋	0.046	1.3	33		新崎川	吉浜橋	0.030	-
10	供从巾	宮	Ш	瀬戸橋	0.064	13	34		千歳川	千歳橋	0.050	_
11		侍行		平潟橋	0.043	5.8	35	国土交通省	中津川・宮ヶ瀬湖	ダムサイト	0.067	2.3
12		境川	柏尾川	鷹匠橋	0.042	0.56	36	神奈川県		湖北中央部	0.022	13
13	神奈川県	相模川	小出川	宮の下橋	0.17	_	37	作示川东	戸ノ内	湖東部	0.022	4.9
14	国土交通省	相相	莫川	馬入橋	0.098	0.44	38			浮島沖	0.061	12
15		相模川	目久尻川	河原橋	0.097	_	39	川崎市		京浜運河千鳥町	0.35	22
16	神奈川県	相相	莫川	寒川取水堰(上)	0.044	_	40			東扇島沖	0.063	14
17	仲宗川宗	相模川	小鮎川	第二鮎津橋	0.033	0.24	41		東京湾	夏島沖	0.068	9.3
18		他採川	鳩川	馬船橋	0.075	1.7	42			大津湾	0.079	8.4
19		境	ш	鶴金橋	0.28	0.86	43	横須賀市		浦賀港内	0.086	6.2
20		児	ווע	常矢橋	0.12	0.98	44			久里浜港内	0.081	6.1
21	相模原市		鳩川	妙奠橋	0.17	1.5	45		相模湾	小田和湾	0.075	3.6
22	怕悮尽巾	相模川	鳩川	三段の滝	0.11	1.2			最大値		0.35	22
23			八瀬川	無量光寺下	0.14	2.0			最小値		0.022	0.20
24		相相		小倉橋	0.054	0.20			平均值		0.079	4.7

(環境基準:水質;1 pg-TEQ/L 、底質;150 pg-TEQ/g)

(備考) は、公共用水域の測定計画における環境基準点(当該水域の環境基準の維持達成状況を把握するための地点)を示す。

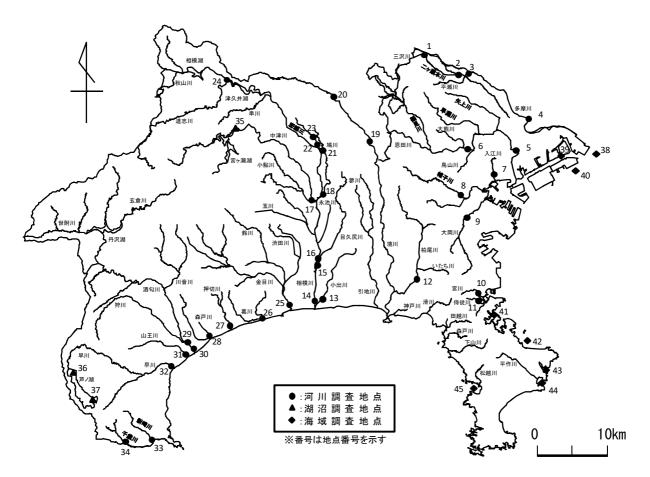


図3 公共用水域調査地点図

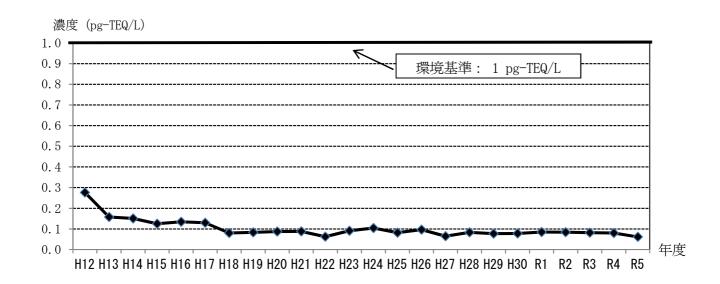


図4 河川(水質)の環境基準点における調査結果の推移(年平均値)

ウ 土壌・地下水調査結果

(7) 調査時期(試料採取日)

土壤:令和5年8月18日~令和5年11月13日

地下水:令和5年8月18日~令和5年11月13日

(イ) 調査結果(表3、表4、図5及び図6)

土壌については、すべての地点(23 地点)で土壌環境基準(1,000 pg-TEQ/g 以下)を達成していた。また、追加的な調査が必要とされる基準(250 pg-TEQ/g 以上)も下回っていた。最大値は 11 pg-TEQ/g、最小値は 0.0028 pg-TEQ/g、平均値は 1.1 pg-TEQ/g であった。

地下水についても、すべての地点(26 地点)で水質環境基準(1 pg-TEQ/L 以下)を達成していた。最大値は 0.065 pg-TEQ/L、最小値は 0.014 pg-TEQ/L、平均値は 0.027 pg-TEQ/L であった。

表 3 土壌調査結果一覧

No	測定機関	調査地点	土壌 (pg-TEQ/g)
1		小田原市成田	0.25
2		南足柄市関本	0.33
3	抽去ⅢⅡ	開成町吉田島	0.016
4	神奈川県	箱根町湯本	0.72
5		真鶴町真鶴	0.13
6		清川村宮ケ瀬	0.091
7		駒岡内町第二公園	0.40
8		不動下公園	0.84
9	横浜市	下永谷東公園	0.52
10		十日市場西田公園	1.7
11		舞岡西根第二公園	0.14
12		桜川公園	1.8
13	川崎市	住吉西公園	0.31
14		中野島中央公園	1.1

No	測定機関	調査地点	土壌 (pg-TEQ/g)		
15		旭小学校(緑区橋本)	1.3		
16		大沢中学校(緑区大島)	0.66		
17	扣拼店士	東橋本ブレーメン公園(緑区東橋本)	11		
18	相模原市	2.0			
19		ふるさと自然体験教室(緑区澤井)			
20		藤野小学校(緑区日連)	0.19		
21		佐原4丁目第3公園	1.5		
22	横須賀市	馬堀海岸4丁目さんかく公園	0.0028		
23		大津公園	0.14		
		11			
		0.0028			
		平均值	1.1		

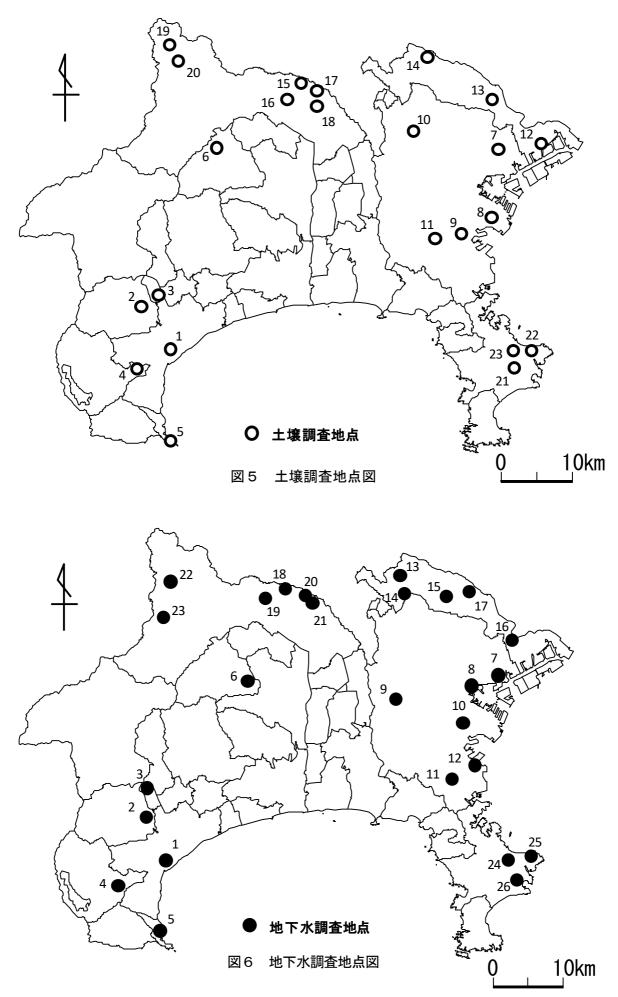

(環境基準:1,000 pg-TEQ/g 以下)

表 4 地下水調査結果一覧

No	測定機関	調査地点	地下水 (pg-TEQ/L)
1		小田原市扇町	0.022
2		南足柄市和田河原	0.023
3	地大川 旧	開成町金井島	0.022
4	神奈川県	箱根町須雲川	0.022
5		真鶴町岩	0.022
6		清川村煤ヶ谷	0.022
7		鶴見区岸谷	0.015
8		神奈川区三ツ沢西町	
9	横浜市	瀬谷区橋戸	0.016
10	(世/共川	南区中里	0.024
11		栄区上郷町	0.022
12		金沢区富岡東	0.014
13		麻生区高石	0.014
14		麻生区王禅寺	0.015
15	川崎市	宮前区宮崎	0.014
16		川崎区小川町	0.031
17		高津区北見方	0.015

No	測定機関	調査地点	地下水 (pg- TEQ/L)
18		緑区橋本	0.029
19		緑区橋本台	0.029
20	+1+# 医士	中央区宮下	0.029
21 22	相模原市	中央区宮下	0.029
		緑区小渕	0.030
23		緑区牧野	0.029
24		三春町	0.062
25	横須賀市	走水	0.065
26		久里浜	0.065
	最:	大値	0.065
	最	小値	0.014
	平:	均值	0.027

(環境基準:1 pg-TEQ/L 以下)

2 汚染状況確認調査

(1) 調査の概要

過去の調査で水質環境基準値を超えた地点及び水質環境基準値の 1/2 を超えた地点において、 汚染状況を確認するための調査を行った。

(2) 調査結果

ア 目久尻川調査結果

(7) 経緯

平成 12 年 7 月に実施した調査において、目久尻川下流の宮山大橋の水質が 1.8 pg-TEQ/L と水質環境基準(1 pg-TEQ/L 以下)を超過していることを確認した。

平成13年度以降、目久尻川と同河川への流入水について毎年度調査を行った結果、 夏季に濃度が高いことを確認したため、平成18年度に年4回監視調査を行った。その 結果、過去に使用された水田農薬由来のダイオキシン類による汚染であると推定され た^{注)}。

令和5年度は目久尻川に流入する流入水(宮山)について、年間で最も濃度が高い 夏季に調査を行った。

(イ) 調査内容

a 調查日

夏季:令和5年8月7日

b 調査地点及び内容

水路:流入水(宮山) (水質)

(ウ) 調査結果(表5及び図7)

2.4 pg-TEQ/L と水質環境基準値を超過した。同族体・異性体別データを解析したところ、これまでと同様で、過去に使用された水田農薬由来のダイオキシン類であると推定された。

令和6年度も継続して調査を実施する。

これまでの調査で、流入水(寒川町宮山)の流域にはダイオキシン類を排出する事業所が確認されず、夏季に浮遊物質量 (SS)が高くダイオキシン類が高濃度となることが分かっており、これらのこととダイオキシン類の同族体・異性体別の濃度分布から、原因は、主に昭和30年代後半から昭和40年代初めにかけて使用された除草剤中に不純物として微量に含まれ、水田土壌中に残留しているダイオキシン類であると推定した。水田土壌中に残留するダイオキシン類の濃度は、流入水(寒川町宮山) 周辺の2地点で210 pg-TEQ/g 及び180 pg-TEQ/g (平成14年県環境科学センター調査)であり、いずれも土壌環境基準(1,000 pg-TEQ/g 以下)を達成していた。

注) 平成19年5月公表

表 5 目久尻川調査結果

調査地点	流入水	(宮山)														(単位:フ	k質;pg-	TEQ/L)
調査年度	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30
調査結果 (夏季)		4.5	2.7		3.4	4.6	4.6	2.8	3.0	2.8	3.9	4.2	2.7	2.4	4.3	1.4	3.4	2.0
調査年度	R1	R2	R3	R4	R5													
調査結果(夏季)	1.7	2.5	2.1	1.9	2.4													

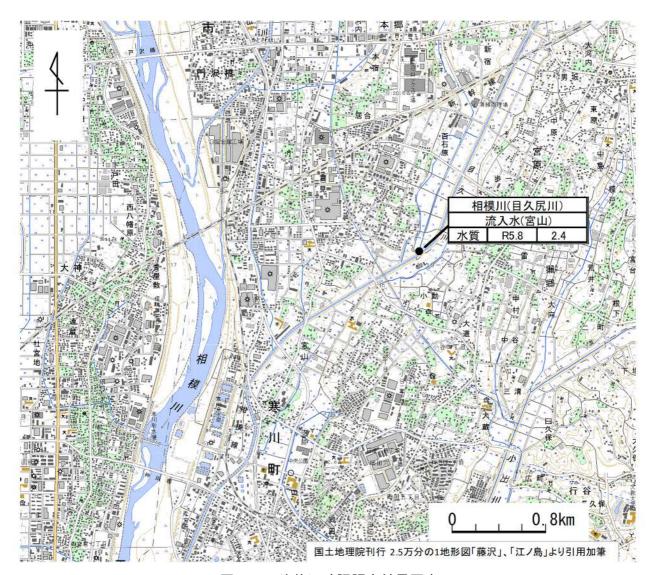


図7 汚染状況確認調査結果図表

イ 重点監視調査結果

過去の調査において、水質環境基準値の 1/2 を超過するダイオキシン類が検出された 地点について重点監視調査を行ってきたが、近年、年間平均値が環境基準値の 1/2 を長 期間安定して下回っていたことから、令和4年度以降は常時監視調査に移行してい る。

Ⅱ 化学物質環境モニタリング調査(水域環境調査)

県は、化学物質による汚染状況を把握するため、「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(以下「化管法」という。)に基づく排出量と有害性を考慮して選定した化学物質について水域環境の調査を実施した。

1 調査の概要

(1) 目的

化学物質による水生生物等への影響を把握する観点から、県所管区域(横浜市、川崎市、相模原市及び横須賀市を除く区域)の水域へ排出され、生態系への影響が懸念される物質等の環境濃度について実態を把握するため調査を実施する。

(2) 調査対象物質(表6)

化管法に基づき事業者から提出されたデータを基に、排出量と有害性を考慮し、溶剤、可塑剤、 界面活性剤及び水生生物に対し内分泌かく乱作用があるとされる物質等8物質を選定した。

表6 調査対象物質

NI -	化管法	調査対象物質	調査項目			
No.	No.	<u> </u>	水質	底質		
1	407	ポリ(オキシエチレン)=アルキルエーテル (<i>C</i> =12~15)	0	_		
2	188	N, N-ジシクロヘキシルアミン	\circ	\circ		
3	664	有機スズ化合物 (トリブチルスズ化合物)	\circ	\circ		
4	664	有機スズ化合物 (トリフェニルスズ化合物)	\circ	\circ		
5	410	ホ° リ (オキシエチレン) = ノニルフェニルエーテル	\circ	_		
6	224	N, N-ジメチルドデシルアミン=N-オキシド	\circ	_		
7	408	ポ [°] リ (オキシエチレン) =オクチルフェニルエーテル	0	_		
8	154	シクロヘキシルアミン	0	0		

(3) 調査地点

水質調査は、図8に示す①~⑩の10地点で実施した。底質調査は⑥小出川(宮の下橋)、 ⑨森戸川(親木橋)の2地点で実施した。

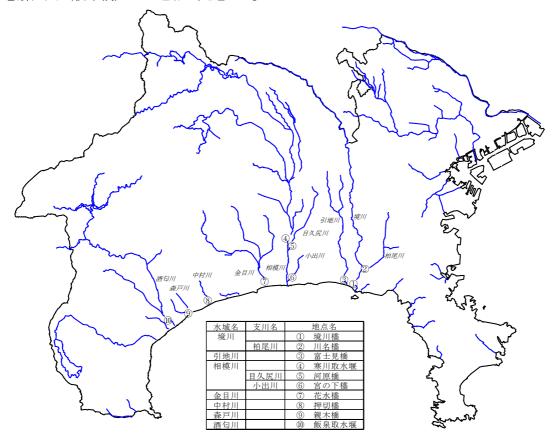


図8 調査地点図

(4) 調査時期

水質については夏季と冬季の年2回、底質については冬季に年1回の調査を実施した。

2 調査結果

(1) 水質調査(表7)

調査した8物質のうち、夏季にポリ(オキシエチレン)=アルキルエーテル(C-12~15)、トリブチルスズ、シクロヘキシルアミンの3物質、冬季にポリ(オキシエチレン)=アルキルエーテル(C-12~15)、N,N-ジシクロヘキシルアミン、トリブチルスズ化合物及びN,N-ジメチルドデシルアミン=N-オキシドの4物質が検出された。検出された値について、ポリ(オキシエチレン)=アルキルエーテル(C-12~15)はこれまでに県が実施した調査結果の範囲を超えていたが、その他の物質については範囲内であった。

- ・ ポリ (オキシエチレン) =アルキルエーテル (C=12~15) は夏季に4河川、冬季に1河川で検出され、目久尻川 (河原橋)、金目川 (花水橋)、中村川 (押切橋)、森戸川 (親木橋)で1~4 μ g/L であった。
- ・ N, N-ジシクロヘキシルアミンは冬季に引地川(富士見橋)で 0.18 μ g/L であった。
- ・ トリブチルスズ化合物は森戸川 (親木橋) で夏季に $0.003~\mu g/L$ 、冬季に $0.001~\mu g/L$ 検出された。

・ シクロヘシキルアミンは夏季に4河川で検出され、境川(境川橋)、柏尾川(川名橋)、相 模川(寒川取水堰)及び金目川(花水橋)でいずれも0.14 μg/L であった。

(2) 底質調査(表8)

調査した4物質のうち、N,N-ジシクロヘキシルアミン及びシクロヘキシルアミンの2物質が検出された。いずれの物質も、検出された値はこれまでに県が実施した調査結果の範囲内であった。

- ・ N, N-ジシクロヘキシルアミンは1河川で検出され、森戸川 (親木橋) で7 $\mu g/kg$ -dry であった。
- シクロヘキシルアミンは2河川で検出され、小出川(宮の下橋)で29 μg/kg-dry、森戸川 (親木橋)で7 μg/kg-dryであった。

表7 水質調査結果

(単位: μg/L)

	化管法		境	Щ	柏月	剧川	引生	也川	相相	莫川	目久	.尻川	小片	出川
No.	No.	調査対象物質	境川橋		川名橋		富士見橋		寒川取水堰		河原橋		宮の	下橋
	NO.		7月	11月	7月	11月	7月	11月	7月	11月	7月	11月	7月	11月
1	407	*** ** *****************************	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND
2	188	N, N-ジシクロヘキシルアミン	ND	ND	ND	ND	ND	0.18	ND	ND	ND	ND	ND	ND
3	664	有機スズ化合物 (トリブチルスズ化合物)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	664	有機スズ化合物 (トリフェニルスズ化合物)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	410	ポリ (オキシエチレン)=ノニルフェニルエーテル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	224	N, N-ジメチルドデシルアミン=N-オキシド	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	408	ポリ (オキシエチレン)=オクチルフェニルエーテル	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	154	シクロヘキシルアミン	0.14	ND	0.14	ND	ND	ND	0.14	ND	ND	ND	ND	ND

No.	化管法	調査対象物質	金目川 花水橋		中村川 押切橋		森戸川 親木橋		酒匂川 飯泉取水堰		検出 下限値	県 調査結果	全国 調査結果
	110.		7月	11月	7月	11月	7月	11月	7月	11月		(H10∼R4)	(S49∼R4)
1	407	π° リ (オキシエチレン) =アルキルエーテル (C =12 \sim 15)	2	ND	1	ND	3	4	ND	ND	1	$ND\sim 2$	ND
2	188	N, N-ジシクロヘキシルアミン	ND	ND	ND	ND	ND	ND	ND	ND	0.01	ND∼0.53	ND~0.0037
3	664	有機スズ化合物 (トリブチルスズ化合物)	ND	ND	ND	ND	0.003	0.001	ND	ND	0.001	ND∼0.20	ND∼0.45
4	664	有機スズ化合物 (トリフェニルスズ化合物)	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND~0.01	ND~0.090
5	410	ポリ(オキシエチレン)=ノニルフェニルエーテル	ND	ND	ND	ND	ND	ND	ND	ND	1	ND~5	_
6	224	N, N-ジメチルドデシルアミン=N-オキシド	ND	ND	ND	ND	ND	ND	ND	ND	0.1	ND∼0.6	ND∼1.2
7	408	ポリ(オキシエチレン)=オクチルフェニルエーテル	ND	ND	ND	ND	ND	ND	ND	ND	1	ND∼4	ND∼0.11
8	154	シクロヘキシルアミン	0.14	ND	ND	ND	ND	ND	ND	ND	0.01	ND∼0.38	ND∼2.4

[※] ND は、検出下限値未満の値であることを示す。 ※ No.は表6に対応している。

表8 底質調査結果

(単位: μg/kg-dry)

No.	化管法 No.	調査対象物質	小出川 宮の下橋	森戸川 親木橋	検出 下限値	県 調査結果 (H10~R4)	全国 調査結果 (S49~R4)
2	188	N, N-ジシクロヘキシルアミン	ND	7	1	ND∼24	_
3	664	有機スズ化合物 (トリブチルスズ化合物)	ND	ND	1	ND∼66	ND~1,600
4	664	有機スズ化合物 (トリフェニルスズ化合物)	ND	ND	1	ND∼29	ND~1, 100
8	154	シクロヘキシルアミン	29	7	1	ND~51	ND∼41

[※] NDは、検出下限値未満の値であることを示す。 ※ No.は表6に対応している。

(参考資料) 水域調査対象物質の概要について

		女に フザ・C		,
物質名	用。途	主な排出源	水生生物等 への影響	基準値等
ポリ(オキシエチレン)=アルキルエーテル (<i>C</i> =12~15)	界面活性剤 (家庭用・業務用洗剤)	家庭	水生生物に対する 有害性がある。	20 μg/L 以下 (水道水質基準値、 非イオン界面活性剤として設定)
N, N-ジシクロヘキシ ルアミン	防錆剤、ゴム薬品、界面活性剤、染料	事業所	水生生物に対する 有害性がある。	
トリブチルスズ 化合物	船底塗料、漁網防汚剤 (これらの用途では、現在、 我が国では使用されていない)、殺菌剤		イボニシ (巻き貝の 一種) に対する 内分泌かく乱作用が 確認されている。	0.6 μg/L 以下(水道水質要検討項目 暫定目標値、有機すず化合物として 設定)
トリフェニルスズ 化合物	船底塗料、漁網防汚剤 (これらの用途では、現在、 我が国では使用されていな い)、殺菌剤		イボニシ (巻き貝の 一種) に対する 内分泌かく乱作用が 確認されている。	0.6 µg/L 以下(水道水質要検討項目 暫定目標値、有機すず化合物として 設定)
ポリ(オキシエチレン)=ノニルフェニル エーテル	界面活性剤(乳化剤、洗浄剤、農薬用展着剤)	農薬の使用、 家庭	水生生物に対する 有害性がある。	20 μg/L 以下 (水道水質基準値、 非イオン界面活性剤として設定)
<i>N, №</i> ジメチル ドデシルアミン= <i>№</i> オキシド	有機化学製品用(洗剤等)、添加剤(繊維用、油用、 その他)、界面活性剤	事業所 (製造業、化学工業 等)	水生生物に対する 有害性がある。	
ポリ(オキシエチレン)=オクチルフェニ ルエーテル	界面活性剤(乳化剤、洗浄剤、農薬用展着剤)	農薬の使用、 家庭	水生生物に対する 有害性がある。	20 μg/L 以下 (水道水質基準値、 非イオン界面活性剤として設定)
シクロヘキシルアミン	添加剤、染料、界面活性剤	事業所 (製造業、化学工業 等)	水生生物に対する 有害性がある。	