令和3年度点検結果報告書-別冊資料編

1 森林整備による事業効果の検証

(1) 関連事業

水源の森林づくり事業、間伐材の搬出促進、地域水源林整備事業

(2) 所管

自然環境保全センター

(3)調査のねらい

人工林における森林整備後の広葉樹の混交状況と下層植生の生育状況を継続的にモニタリングすることにより、森林整備による中期的な質的効果を検証する。

(4)調査項目

- ① 林分構造(平成29年度~)
- ② 下層植生:植被率の変化(平成19年度~)
- ③ 光環境:開空度の変化率

(5)調查方法等

- ・人工林の森林整備実施箇所 22 地点において針広混交林の誘導状況を把握 するために、植栽木に加えて樹高 1.5m以上の広葉樹の樹種、直径、樹高 を 5 年毎に調査
- ・1.5m以下の下層植生についても植被率や出現種の被度を記録
- ・補足調査として、センサーカメラによるシカの生息状況及び保護柵内外の 変化についても調査。

(6) これまでの検証結果等

- ・第3期(平成29年度から令和3年度)にかけて調査した地点の約8割で 低木層を中心に広葉樹(広葉樹その他)の侵入し混交林化が進んでお り、3割では亜高木層が形成されつつある。
- ・同時期における調査林分の成立本数は、大半が 400 本/ha から 800 本/ha の範囲にあり、第 3 期に間伐が進み、一部の調査地を除いて目標とする 400 本/ha から 600 本/ha 前後まで低下している。林床付近の光条件の指標となる地上 1.0mの高さで撮影した天空写真から計測した各調査地の開空度は、4%から 17%の範囲で、平均では 7%前後と調査林分によりばらつきが大きかった。
- ・また、林床付近の植生回復の指標となる地区別の草本層の平均植被率は、小仏地区、丹沢地区、箱根地区でそれぞれ41%から45%の範囲にあり、地区により大きな差はなったが、試験区によってばらつきがあり、植生回復が進まない調査地があった。
- ・第3期中のニホンジカの撮影頻度は、丹沢地区が最も多く 0.344 回/カメラ日、次いで箱根外輪山地区 0.157 回/カメラ日、小仏地区の 0.086 回/カメラ日の順であり、小仏地区でも撮影されるようになっている。

2 土壌保全対策による事業効果の検証

(1) 関連事業

土壌保全対策の推進(中高標高域の自然林の土壌保全対策の実施)

(2) 所管

自然環境保全センター

(3)調査のねらい

水源保全上重要な丹沢大山において、土壌侵食が深刻化している地域で施工 された土壌保全事業の効果を、植生調査等を行うことで検証する。

(4)調査項目

6地区(堂平地区、檜洞丸地区、熊笹ノ峰地区、犬越路南地区、犬越路北地区、大室山地区) 51地点で、以下の項目を調査。

- ① 植生調查
- ② 光環境調査
- ③ 林床合計被覆率
- ④ 定点写真撮影
- ⑤ 金網筋工の侵食堆積深等測定
- ⑥ 構造階段の植生調査等

(5)調査方法等

植生保護柵設置後5年間を基本に毎年度継続して調査

(6) これまでの検証結果等

植生保護柵

- ・植生保護柵内外で比較すると、多くの地点で、柵内の確認種数、林床植被 率、植生高が高い傾向が見られた。
- ・林床合計被覆率(植生+リター)において、裸地化20%以上を示したのは、 全て柵外であった。

金網筋工

- ・侵食堆積深の調査では、ほぼ全ての地点で堆積効果が確認できた。
- ・植生調査では差異が見受けられず、植生保護柵外と同等の箇所もあった。
- ・リターの被覆率について金網筋工と植生保護柵を比較すると、金網筋工の 方が高い傾向にあった。

以上のことから、次のことが示唆された。

- ・植生保護柵は、金網筋工と比較して植生回復の効果が高い。
- ・金網筋工は、植生保護柵と比較して土壌侵食を抑え堆積させる効果が高い。

3 ブナ林等の再生の事業効果の検証

(1) 関連事業

丹沢大山の保全・再生 (ブナ林等の再生)

(2) 所管

自然環境保全センター

(3)調査のねらい

丹沢山地の高標高ブナ林の衰退状況、衰退要因 (ブナハバチ)、天然更新による再生状況、植栽試験等のモニタリングを行い、植生保護柵の設置、シカ管理捕獲及びブナハバチ防除試験の事業連携により実施しているブナ林再生事業の効果を検証する。

(4)調査項目とその内容

- ① 衰退状況:7調査区でのブナの健全度・ブナハバチ食害度調査
- ② ブナハバチ:6地点での成虫捕獲による発生調査、繭密度調査
- ③ 大気・気象観測:4地点での大気汚染(オゾン)濃度、雨量、風向風速、気温、地温、日照等の常時観測
- ④ 植生調査:7地点での天然更新、林床植生、開空度調査、3地点での 植栽試験

(5) これまでの検証結果等

- ・ブナ林の衰退状況については、ブナハバチの食害がブナの衰弱・枯死に大きく関与することがモニタリング結果から明瞭となった一方、ここ6年間は丹沢山地でブナハバチの激しい食害はみられず、健全なブナの個体数の割合が大幅に増加した地域もみられた。
- ・ブナハバチの防除対策については、依然としてブナハバチの高密度状態の地 区があることから、大量発生に備えるため、ブナハバチや大気・気象観測の モニタリング成果を活用した発生予察技術開発を行った。
- ・天然更新による再生状況については、ギャップの大きさにより更新樹種が異なり、大ギャップではニシキウツギやマユミなどの小高木種が優占して、小ギャップではイヌシデやカエデ類の高木種が優占しており、いずれも植生保護柵内で樹高成長していた。
- ・植栽試験については、破損した植生保護柵では生存率が低下し、樹高成長が抑制されるが、破損のない植生保護柵では、いずれの樹種も10~15年経過時で生存率は50%を超えており、平均樹高は1~4mとなった。
- ※ これまでの検証結果を踏まえた再生の方針は、「丹沢ブナ林再生指針」 (H29.6)に掲載

4 中高標高域におけるシカ管理の事業効果と植生の回復状況の検証

(1) 関連事業

丹沢大山の保全・再生(中高標高域におけるシカ管理の推進)

(2) 所管

自然環境保全センター

(3)調査のねらい

シカの生息密度調査、生息数推定、植生の回復状況等のモニタリングを行い、シカ個体数の低減状況と下層植生の回復状況を検証する。

(4)調査項目、方法

シカ管理捕獲の効果検証を行うために、糞塊法、区画法等の委託調査を実施し、このデータに基づき階層ベイズ法によるシカの個体数の推計とその動向の把握を行う。また、これによる下層植生の回復状況調査を行う。

以下は、調査内容。

- ① 糞塊法 (糞塊数のルート調査)
- ② 区画法(区域を設定した目視調査)
- ③ ベイズ推計(上記①、②等のデータによる個体数推移シミュレーション)
- ④ 植生定点調査(広葉樹林に設置した植生保護柵内外で林床植生の被度、 種数等を調査)

(5) これまでの検証結果等

- ① 糞 塊 法:計画対象区域のシカ生息状況を広域で概観すると、丹沢山 地の中央より東側では生息密度の増加が抑制されているが、 西側の一部や箱根山地では増加傾向が示されている。
- ② 区 画 法:主なシカ生息地での目視調査であり、継続して捕獲を続けた箇所でシカの減少傾向が確認されている一方、目標密度に達しない箇所や増加傾向の箇所もある。
- ③ ベイズ推計: 丹沢山地の中高標高域では、シカ個体数のゆるやかな減少 傾向が確認されているが、定着防止区域では増加傾向がみられる。
- ④ 植生定点調査: ニホンジカ管理計画における第3次計画(H24~H28)時点で、52 地点*1 (柵外) のうち約5割が植被率50%以上*2 もしくは25%以上*3となった。また、第3次計画と第4次計画(H29~R3)の5年間の比較では、約1割の調査地点で植被率が10%以上増加した。
 - *1 ニホンジカ管理計画における自然植生回復エリアと生息環境管理エリアの調査地点
 - *2 ニホンジカ管理計画における自然植生回復エリアの目標基準値
 - *3 ニホンジカ管理計画における生息環境管理エリアの目標基準値

|5 渓畔林整備による事業効果の検証

(1) 関連事業

渓畔林整備事業 (第2期までの実施)

(2) 所管

自然環境保全センター

(3)調査のねらい

- ・ 渓畔林整備後の下層植生の生育状況等を継続的にモニタリングすること により、渓畔林整備事業による初・中期の整備効果を検証する。
- ・事業の検証結果に基づき初期の整備技術を確立させ、私有林での渓畔林整備に資する。

(4)調査項目

- ① 林床植生:植被率、種名、被度、群度
- ② 樹木稚樹生育狀況:種名、樹高、根元位置
- ③ 林床被覆状况: 林床合計被覆率
- ④ 光環境:開空度

(5)調查方法等

渓畔林整備を行う森林毎に調査区を設定し、事前調査及び施工後、3~5年 毎に調査を実施。

(6) これまでの検証結果等

- ・中川川上流域(大滝沢)および中津川流域(本谷川)の、異なる内容の整備を実施した渓畔域森林内において、その効果をモニタリングした。なお、大滝沢の調査区は整備後7年と5年、本谷川の調査区は7年と6年が経過している。
- ・モニタリングの結果、大滝沢の針葉樹林で、間伐、植生保護柵の設置、土 壌保全工を実施した箇所においては、針広混交林への移行が順調に進んで いると考えられた。
- ・一方、間伐と土壌保全工、間伐と植生保護柵の設置、植生保護柵の設置の み、間伐のみの箇所においては、効果が見られないか限定的と考えられた。
- ・本谷川の落葉樹林内で植生保護柵を設置した箇所は、目標とする「林床植生の発達した広葉樹林」が形成されつつあると考えられた。
- ・本谷川の針葉樹林内では、間伐と植生保護柵の設置、植生保護柵の設置の みの箇所においても、林分の目標である「針広混交林を経て広葉樹林」に 向かいつつあると考えられた。また、間伐のみの箇所においても、シカの 採食圧の影響は受けているものの、上層広葉樹の幹本数が増加・成長して いた。植生保護柵の設置の有無の違いは、上層での広葉樹の増加幅、稚樹 の本数および樹高に影響していると考えられた。
- ・平成19年度以降、2期10年間、渓畔林のモデル林を整備し効果を検証してきた結果を基に、渓畔林の初期の整備手法として、「渓畔林整備の手引き」をとりまとめている。

|6 河川の流域における動植物等調査

(1) 関連事業

河川·水路整備

(2) 所管

環境科学センター

(3)調査のねらい

- ・河川環境を指標する水生生物、河川と関わりのある陸域生物、生物の生息 環境及び森林管理と密接に関係する窒素、SS(浮遊物質量)等の水質に ついて調査を行い、将来の施策展開の方向性について検討するための基礎 資料を得る。
- ・施策の効果として予想される河川環境の変化を把握する。
- ・従来実施してきた捕獲による生物調査を代替・補完するため、近年注目を 集めている環境 DNA 調査 (※) 手法の検討を行う。
 - ※生物の排泄物や組織片などに由来する水中に存在する DNA 断片を採取・ 分析することで間接的に生物の生息状況を把握する生物調査手法

(4)調査項目

·環境 DNA 調査

(5)調査方法等

- ・底生動物の環境 DNA 調査手法開発のため、底生動物の DNA データベースを 充実させるとともに、底生動物のうち水生昆虫に対して特異的に増幅可能 な試薬などを試すことにより検出率の向上を図る。
- ・また、環境 DNA 調査結果を事業効果の評価に活用し、捕獲調査との特性の 違いなどを評価するため、過去の捕獲調査結果と水質との相関を検証する とともに、環境 DNA 調査の高頻度・広域調査を実施する。

(6) これまでの検証結果等

<新規調査(環境 DNA 調査手法の導入)>

[底生動物]

- ・課題となっていた県内に生息する底生動物の DNA データベースの不足に対し、幼虫及び成虫の捕獲調査を実施し、353 種・属の DNA データベースを整備した。
- ・整備した DNA データベースを活用することで分類群によっては非常に高精度な種検出が可能となっており、今後は DNA データベース整備と並行して、環境 DNA 調査の結果を河川環境の健全度や水源事業の評価に活用するための検討を実施する。

[事業評価関連]

・相模川・酒匂川について、過去の生物の捕獲調査と水質調査結果の相関を検証し、TOC や COD 等の有機的な汚れの指標となる種としてカジカが選定され、 種多様性の指標となる種としてヨシノボリ属(カワヨシノボリを除く)が選定された。

・水源事業により最も重点的に浄化槽を設置した河川である串川については、 高頻度での環境 DNA 調査を継続するとともに、相模川中下流域を中心に広域 的な環境 DNA 調査を実施し、捕獲調査と同様の結果が得られるか検証したと ころ、調査データは少ないものの同様の傾向がみられることが明らかとなっ た。

[県民調査関連]

・環境 DNA 調査のうち、既に調査手法が確立されている魚類については試行的に県民調査に導入をした。その結果、8 地点で県のレッドデータリスト掲載 種等の重要種 9 種を含む計 31 種・属の魚類を検出し、県民調査員による調査でも十分な精度で生物調査が実施できることが明らかとなった。

7 河川・水路の自然浄化対策による事業効果の検証

(1) 関連事業

河川・水路の自然浄化対策事業

(2) 所管

水源環境保全課

(3)調査のねらい

整備を実施した河川・水路において水質や動植物の状況を定期的にモニタリングすることにより、河川・水路整備による中期的な質的効果を検証する。

(4)調査項目

①水質: pH, BOD, SS, DO 等

②動植物:各種類の動植物の生息状況

(5)調査方法等

・整備を実施した河川・水路において、継続して調査(整備後2年間は必須)

・水質については整備箇所の上下流で調査

(6) これまでの検証結果等

- ①水質については主に生物化学的酸素必要量(BOD)で効果検証を行っており、整備後も概ねA類型相当の値を保っている。
- ②動植物については、調査を実施している一部の施工地で整備前と比較して 種類の増加、生息数の増加がみられている。

【河川・水路等の整備におけるモニタリング調査結果】

- ・ 工事後の水質調査は、42 箇所で実施した。
- ・ BOD について、工事箇所下流の工事前後を比較し、工事後に低下した箇所は 26 箇所、上昇した箇所は 12 箇所、変化がなかった箇所は 4 箇所で、工事後 の値は概ね河川の環境基準A類型 (2.0mg/L) 相当の数値であった。

ア 生態系に配慮した河川・水路等の整備

	市町村	事業箇所	工事箇所下流の	水質(BOD)	年	変化	
	1 1 1 1		工事前 (a)	工事後 (b)	工事前	工事後	(a)-(b)
1	小田原市	鬼柳排水路	1.0	0.9	H19	H28	0.1
2	小田原市	桑原排水路	0.9	0.7	H19	H28	0.2
3	小田原市	栢山排水路	2.0	2.3	H20	H28	△0.3
4	小田原市	牛島排水路	1.0	0.7	H26	R3	0.3
5	小田原市	寺下排水路	1.1	1.1	H26	R3	0
6	小田原市	西大友排水路	0.7	1.0	H29	R3	$\triangle 0.3$
7	相模原市	姥川区間1	3.1	1.6	H19	R3	1.5
8	相模原市	姥川区間2	4.0	2.2	H24	H28	1.8
9	相模原市	八瀬川区間1	1.5	0.8	H22	R3	0.7
10	相模原市	八瀬川区間2	0.9	0.6	H24	H28	0.3
11	相模原市	道保川区間1	0.7	0.9	H20	R3	△0.2
12	相模原市	道保川区間2	0.5	0.9	H24	H28	△0.4

13	厚木市	恩曽川区間1	0.9	0.9	H20	H28	0.0
14	厚木市	恩曽川区間2	0.7	0.7	H24	H30	0.0
15	厚木市	東谷戸川	1.4	0.7	H20	H28	0.7
16	厚木市	善明川区間1	1.8	0.9	H21	H28	0.9
17	厚木市	善明川区間2	1.6	1.2	H26	H28	0.4
18	厚木市	善明川区間3	0.7	1.0	H26	H28	△0.3
19	厚木市	北久保川	0.8	0.7	H29	R3	0.1
20	厚木市	干無川	0.3	0.9	H29	R3	$\triangle 0.6$
21	伊勢原市	日向用水路	1.1	0.4	H20	H28	0.7
22	伊勢原市	藤野用水路	2.2	0.9	H24	H30	1.3
23	南足柄市	泉川	0.5	0.7	H20	H28	$\triangle 0.2$
24	南足柄市	神崎水路	1.8	1.7	H21	H28	0.1
25	南足柄市	弘西寺堰水路	14**2	0.9	H22	H29	13.1
26	大井町	農業用水路	0.5	0.5	H21	H28	0.0
27	松田町	河土川	3.0	0.5	H25	R3	2.5
28	山北町	日向用水路	0.5	0.9	H20	H28	△0.4
29	山北町	川村用水路	1.0	0.6	H24	H30	0.4
30	開成町	宮ノ台土掘田 水路	4.0	0.8	H20	H28	3.2

イ 河川・水路等における直接浄化対策

	市町村	市業倍能	工事箇所下流の	D水質(BOD)	年	度	変化
	山加川4月	事業箇所	工事前 (a)	工事後(b)	工事前	工事後	(a)-(b)
1	相模原市	姥川区間2※3	1.6	2.3	H24	H28	△0.7
2	相模原市	八瀬川 _{区間2} ※	0.9	0.7	H24	H28	0.2
3	相模原市	道保川区間2※	0.5	1.2	H24	H28	△0.7
4	厚木市	恩曽川(浄化 ブロック設 置工) 区間1	3.5	1.4	H19	H28	2.1
5	厚木市	恩曽川(浄化 ブロック設 置工) 図間2	1.1	1.0	H21	H28	0.1
6	厚木市	恩曽川(浄化 ブロック設 置工) _{区間3}	1.0	1.1	H21	H28	△0.1
7	厚木市	恩曽川(浄化 ブロック設 置工) _{区間4}	1.0	1.4	H21	H28	$\triangle 0.4$
8	厚木市	善明川(粗朶 沈床工)	1.7	1.0	H21	H28	0.7
9	厚木市	山際川(浄化 ブロック設 置工) ^{※4}	2.7	4.0	H20	H28	△1.3
10	伊勢原市	藤野用水路※	2.2	0.9	H24	H28	1.3
11	開成町	用水路(ひも 状接触材設 置工) 区間2 ^{※5}	9.0	0.7	H19	H28	8.3
12	開成町	上島水路(水 生 植 物 の 植 栽工)	2.5	0.6	H19	H28	1.9

^{※1} 環境基本法第 16 条に規定される環境基準において、測定回数は「原則として月 1 回以上」としている(年間 12 回以上)。一方、本件については、工事期間中等水質が安定しない時期があるため、測定回数を「整備計画の策定に必要な期間内に 2 回/日を原則月 2 回程度実施する」としている(年間 4 回程度)。このため、季節

変動が考慮できず、かつ測定回数が少ないため、測定誤差が大きい。

- ※2 弘西寺堰水路の水質調査結果は、一時的な汚水等の流入等が原因による突発的な数値と考えられた。
- ※3 河川・水路における直接浄化対策は、効果が高い自然石等による礫間浄化を推奨するため、第2期から生態系に配慮した河川・水路の整備と併せて行うこととしており、生態系に配慮した河川・水路の整備の実施内容を再掲した。
- ※4 隣接国道から汚水の流入があるため、BOD の数値が高くなっている。整備区間の上下流では BOD の低下が認められる。(H28 上流 5.5 mg/ ℓ →下流 4.0 mg/ ℓ)
- ※5 上流で生活排水の流入があったため数値が高かったと考えられる。

【整備手法等を追加した評価結果】

・工事後の評価は、42 箇所で実施した。なお、評価については、平成 26 年度より「河川水 路事業評価シート」を使用し、①水質・動植物調査、②整備手法、③水環境の維持につい て、それぞれ評価している。[満点:100点(①20点、②60点、③20点]

(評価シートについては、県水源環境保全課ホームページに掲載

http://www.pref.kanagawa.jp/cnt/f7006/p23439.html)

・評価結果について、工事前後を比較し、評価点が向上した箇所は 39 箇所、低下した箇所は 1 箇所、変化がなかった箇所は 2 箇所であった。なお、評価点が低下した箇所は、一時的 に溶存酸素量 (DO) が基準値をわずかに下回ったため、評価が低下している。

また、生態系に配慮した河川・水路等の整備は工事前後で評価点が平均で約23点向上し、 直接浄化対策は工事前後で評価点が平均で約17点向上した。

ア 生態系に配慮した河川・水路等の整備

			工事箇列	斤の評価点	左	度	変化
	市町村	事業箇所	(①水質・動植物 ②整	備手法 ③水環境の維持)	4-	及	(b)-
			工事前(a)	工事後(b)	工事前	工事後	(a)
1	小田原市	鬼柳排水路	62(①14 点②39 点③9 点)	65(①14 点②39 点③12 点)	H19	H28	3
2	小田原市	桑原排水路	37(①19 点②12 点③6 点)	60(①20 点②27 点③13 点)	H19	H28	23
3	小田原市	栢山排水路	34(①15 点②16 点③3 点)	46(①19 点②23 点③4 点)	H20	H28	12
4	小田原市	牛島排水路	36(①17 点②16 点③3 点)	48(①19 点②21 点③8 点)	H26	R3	12
5	小田原市	寺下排水路	36(①17 点②16 点③3 点)	48(①19 点②21 点③8 点)	H26	R3	12
6	小田原市	西大友排水路	47(①16 点②27 点③4 点)	47(①16 点②27 点③4 点)	H29	R3	0
7	相模原市	姥川区間1	34(①12 点②17 点③5 点)	65(①19 点②34 点③12 点)	H19	R3	31
8	相模原市	姥川区間2	37(①15 点②17 点③5 点)	63(①17 点②34 点③12 点)	H24	H28	26
9	相模原市	八瀬川区間1	40(①19 点②17 点③4 点)	57(①16 点②36 点③5 点)	H22	R3	17
10	相模原市	八瀬川区間2	40(①19 点②17 点③4 点)	62(①20 点②36 点③6 点)	H24	H28	22
11	相模原市	道保川区間1	48(①19点②17点③12点)	81(①21 点②46 点③14 点)	H20	R3	33
12	相模原市	道保川区間2	47(①17点②18点③12点)	77(①20 点②43 点③14 点)	H24	H28	30
13	厚木市	恩曽川区間1	35(①16 点②17 点③2 点)	52(①20 点②27 点③5 点)	H20	H28	17
14	厚木市	恩曽川区間2	20(①16 点②6 点③-2 点)	79(①29 点②43 点③7 点)	H26	H29	59
15	厚木市	東谷戸川	11(①18 点②-5 点③-2 点)	69(①20 点②41 点③8 点)	H20	H28	58
16	厚木市	善明川区間1	21(①14 点②8 点③-1 点)	81(①20 点②50 点③11 点)	H21	H28	60

17	厚木市	善明川区間2	17(①14 点②3 点③0 点)	46(①20 点②26 点③0 点)	H26	H28	29
18	厚木市	善明川区間3	19(①16 点②4 点③-1 点)	47(①25 点②23 点③-1 点)	H26	H28	23
19	厚木市	北久保川	31(①20 点②12 点③-1 点)	31(①20 点②12 点③-1 点)	R1	R3	0
20	厚木市	干無川	31(①20 点②12 点③-1 点)	29(①18 点②12 点③-1 点)	R1	R3	$\triangle 2$
21	伊勢原市	日向用水路	61(①20点②27点③14点)	79(①20 点②42 点③17 点)	H20	H28	18
22	伊勢原市	藤野用水路	44(①20 点②17 点③7 点)	67(①14 点②43 点③10 点)	H24	H30	23
23	南足柄市	泉川	38(①20 点②18 点③0 点)	59(①20 点②35 点③4 点)	H20	H28	21
24	南足柄市	神崎水路	30(①16点②15点③-1点)	47(①20 点②23 点③4 点)	H21	H28	17
25	南足柄市	弘西寺堰水路	43(①14 点②23 点③6 点)	49(①16 点②25 点③8 点)	H22	H29	6
26	大井町	農業用水路	20(①18 点②2 点③0 点)	71(①20 点②42 点③9 点)	H21	H28	51
27	松田町	河土川	46(①12 点②31 点③3 点)	65(①16 点②43 点③6 点)	H25	R3	19
28	山北町	日向用水路	37(①21 点②13 点③3 点)	43(①20 点②17 点③6 点)	H21	H28	6
29	山北町	川村用水路	33(①14 点②18 点③1 点)	76(①20 点②47 点③9 点)	H24	R元	43
30	開成町	宮ノ台土掘田水路	26(①10 点②14 点③2 点)	41(①20 点②17 点③4 点)	H20	H28	15

イ 河川・水路等における直接浄化対策

			工事箇所	<i>F</i>	変化		
	市町村	事業箇所	(①水質・動植物 ②整体	年	(b)-		
			工事前(a)	工事前	工事後	(a)	
1	相模原市	姥川区間2※	37(①15 点②17 点③5 点)	57(①17 点②34 点③6 点)	H24	H28	20
2	相模原市	八瀬川区間2	41(①19 点②18 点③4 点)	62(①20 点②36 点③6 点)	H24	H28	21
3	相模原市	道保川2※	47(①17 点②18 点③12 点)	73(①20 点②41 点③12 点)	H24	H28	26
4	厚木市	恩曽川(浄化ブ ロック設置工) 区間1	51(①11 点②35 点③5 点)	63 (①20 点②40 点③3 点)	H19	H28	12
5	厚木市	恩曽川(浄化ブロック設置工) 区間2	9(①18 点②-7 点③-2 点)	16(①20 点②-2 点③-2 点)	H21	H28	7
6	厚木市	恩曽川(浄化ブ ロック設置工) 区間3	12(①18 点②-4 点③-2 点)	22(①20 点②4 点③-2 点)	H21	H28	10
7	厚木市	恩曽川(浄化ブ ロック設置工) 区間4	13(①18 点②-4 点③-1 点)	18(①20 点②-1 点③-1 点)	H21	H28	5
8	厚木市	善明川(粗 杂沈床工)	21(①12 点②10 点③-1 点)	58(①20 点②32 点③6 点)	H21	H28	37
9	厚木市	山際川(浄化ブ ロック設置工)	9(①14 点②-4 点③-1 点)	18(①20 点②-1 点③-1 点)	H20	H28	9
10	伊勢原市	藤野用水路	44(①20点②17点③7点)	73(①20 点②43 点③10 点)	H24	H28	29
11	開成町	用水路(ひも状 接触材設置工) 区間2	30(①15 点②16 点③-1 点)	42(①20 点②21 点③1 点)	H19	H28	12
12	開成町	上島水路(水生 植物の植栽工)	38(①18 点②16 点③4 点)	48(①20 点②21 点③7 点)	H19	H28	10

[※] 河川・水路における直接浄化対策は、効果が高い自然石等による礫間浄化を推奨するため、第2期から生体系に配慮した河川・水路の整備と併せて行うこととしており、生態系に配慮した河川・水路の整備の実施内容を再掲した。

8 地下水保全対策による事業効果の検証

(1) 関連事業

地下水保全対策事業

(2) 所管

水源環境保全課

(3)調査のねらい

ア. <地下水汚染対策>

秦野市において、浄化装置を設置して地下水に含まれている有機塩素系 化学物質の浄化を行っているため、その中期的な質的効果を検証する。

イ. <地下水モニタリング(事業)>

地下水質、地下水位のモニタリングを行い、地下水を水道水源として利用 している地域の地下水の状況を監視することで、良質で安定的な地下水の 確保に資する。

(4)調査項目、方法

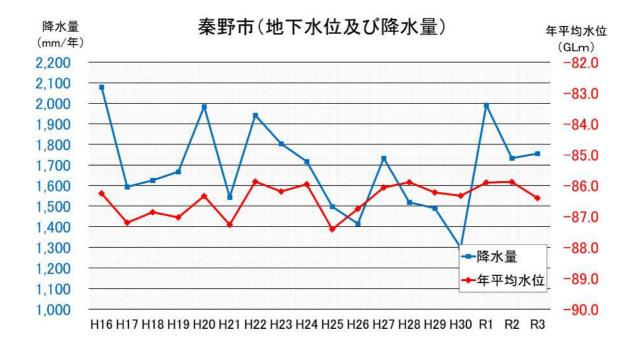
ア. <地下水汚染対策>

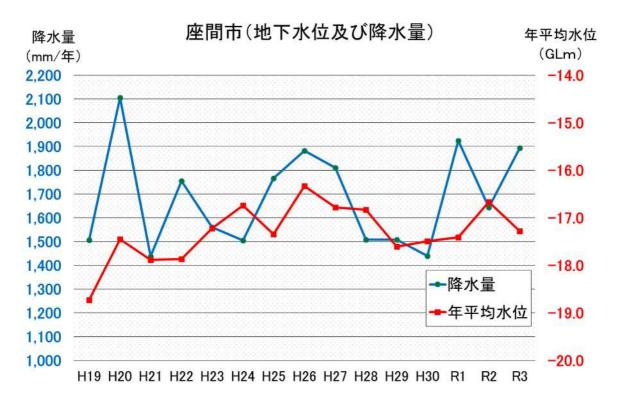
調査項目:有機塩素系化学物質 調査方法等:毎年度継続して調査

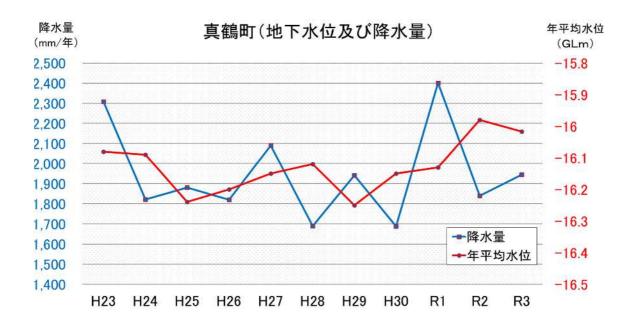
イ. <地下水モニタリング(事業)>

調査項目:地下水位、地下水質調査方法:毎年度継続して調査

(5) これまでの検証結果等

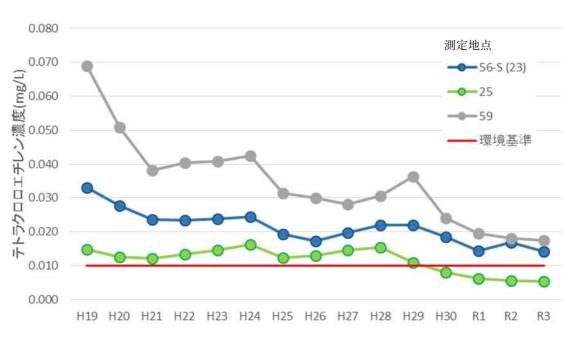

ア. <地下水汚染対策>


浄化装置の設置後、有機塩素系化学物質であるテトラクロロエチレンの 濃度は減少している。


- イ. <地下水モニタリング(事業)>
 - ・地下水位は直前の降雨状況に対応して変動しているものの、年間を通じて地下水利用に問題のない水位レベルを維持している。
 - ・令和3年度は地下水質のモニタリングを行っている10市町において、 汚染は確認されていない。

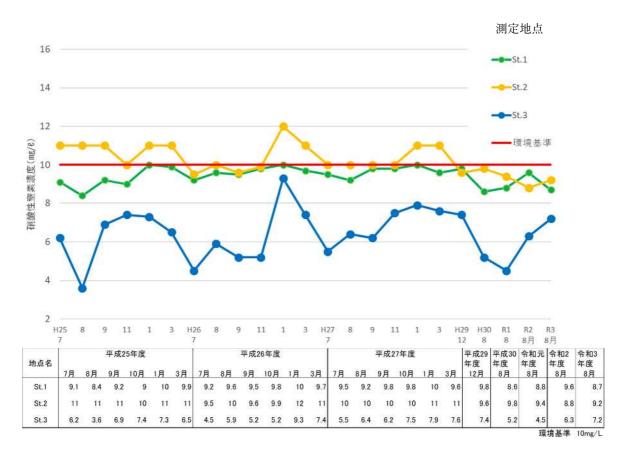
【地下水位】

• GL とは Ground LeveL (地盤面) の略です。GL-1.00m は、地盤面から 1m 以上下がった高さを表します。

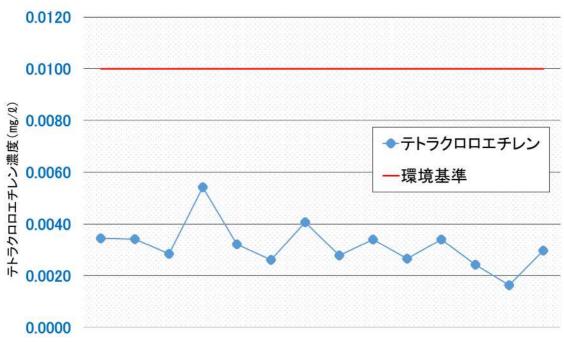


【地下水質】

図 秦野市におけるテトラクロロエチレン濃度の変化



地点名	H19	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	R1	R2	R3
56-S (23)	0.033	0.028	0.024	0.024	0.024	0.024	0.019	0.017	0.020	0.022	0.022	0.018	0.014	0.017	0.014
25	0.015	0.013	0.012	0.013	0.015	0.016	0.012	0.013	0.015	0.015	0.011	0.008	0.006	0.006	0.005
59	0.069	0.051	0.038	0.040	0.041	0.042	0.031	0.030	0.028	0.031	0.036	0.024	0.020	0.018	0.017
													唇音其准	0.01mg/I	


事業実施区域の情報は、次の秦野市ホームページ(データ編【6. 地下水(深層地下水 浄化事業位置図)】 P 6 4) に掲載

https://www.city.hadano.kanagawa.jp/www/contents/1001000000688/index.html

中井町(厳島湿生公園)における硝酸性窒素濃度の変化 図

座間市(地点:深井戸A3)におけるテトラクロロエチレンの濃度の変化 义

H20H21H22H23H24H25H26H27H28H29H30 R1 R2 R3

	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	R1	R2	R3
テトラクロロ エチレン	0.0035	0.0034	0.0028	0.0054	0.0032	0.0026	0.0041	0.0028	0.0034	0.0027	0.0034	0.0024	0.0016	0.0030
1 C 環境基準 0.01mg/2														