対	策	の 内 容 ★空調機ファンに省エネベルトを採用
A	運用対策	B 設備導入等対策 区分番号 1201、3804
		小 分 類 空気調和設備、ファン及びフロリー
現	 	空調機ファンは、2.2 kW 電動機が 15 台 V ベルトで 24 時間駆動している。
対	策内容	● 空調機ファンの V ベルトを順次省エネタイプに変更する。
		● 省エネタイプの V ベルトは、約 4%の節電効果が期待できる。
	算の前提 件 球温暖 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	①電動機負荷率:80%
計!		②稼働時間:24 h/日、365 日/年
条		③V ベルト交換による電力削減率:4%
		④電力料金:17.2 円/kWh ⑤排出係数:0.475 t-CO ₂ /千 kWh
		③併 田 保 級 : 0.4 / 5 t-CO ₂ / 〒 k W h 【削 減 エネルギー量 】
		電動機容量×電動機負荷率×稼働時間×動力削減率
		电 動 機 存 重 \wedge 电 動 機 負 闹 平 \wedge 像 働 時 間 \wedge 動 \wedge 的 機 平 $= 2.2 \text{ kW} \times 0.8 \times 24 \text{ h} / \text{日} \times 365 \text{ H} / \text{年} \times 0.04 \times 15 \text{ H} = 9.3 \text{ Hz Wh} / \text{年}$
地玉		注) 電動機効率は、考慮していない。
		[削減金額]
		9.3 千 kWh/年×17.2 円/kWh= 160 千円/年
		 [削減 CO ₂ 量]
		9.3 千 kWh/年×0.475 t-CO ₂ /千 kWh= <u>4.4 t-CO₂/年</u>
	考	[省エネファンベルトについて]
		省エネファンベルトは、ベルト底面に凹凸加工(ノッチ加工)を施すことにより、ベル
		トがプーリーに巻きつく「曲げ応力」を小さくすることにより、ベルト曲げ応力損失の削
		減を図ることができる。
		ノッチ加工
備		省エネファンベルトの構造
		(環境省ホームページ http://www.env.go.jp/earth/ondanka/gel/ghg-guideline/
		business/measures/view/11.html より)
		[使用上の留意点]
		省エネファンベルトは、上記のようなノッチ加工が施されているため、通常の V ベ
		ルトに比べて伸びが生じやすいという特性がある。そのため、取替え3日後、1週間
		後、1ヵ月後、3ヵ月後に張力測定を行い、適正張力になるよう調整を行うことが必要しなる。 て動力になるよう調整を行うことが必要しなる。 て動力になるよう調整を行うことが必要しなる。 て動力になるよう調整を行うことが必要しなる。 で動力になるよう
		要となる。張力が低いと空転が生じ、かえって動力ロスを生じる可能性があるので注
		意する。