結言

わが国における光化学スモッグによる農作物被害は、昭和40年代中期に発見され、その後、北海道を除くほとんどの地域で発生している。特に首都圏およびその近郊での被害が著しく、農業および環境保全上、重要な問題になっている。春期から秋期にかけて発生される小麦や小豆、オキシダントの発生を招くため、栽培を控える農家が多くなっている。

オキシダントによる農作物被害とその程度は、オキシダント発生時の光・温度・土壤水分等の環境要因のほか、植物の生育状態によっても異なることが報告されている。しかしながら、野外における農作物のオキシダント障害

* 本報告の一部は昭和55年度大気汚染学会および昭和55年度土壤肥料学会関東支部大会で講演発表した。

** 現神奈川県農業大学教授
時光大気科長に御指導をいただいた。ここに記して深く感謝を表します。

II 大型ガラスハウスにおけるホウレンソウのオキシダント障害の発生分布

調査

冬期に果樹害虫を業訴した調査を有効に利用するため、夏期にホウレンソウ栽培作の事例が多い。このため栽培中のホウレンソウにしばしばオキシダント障害が発生する。ここでは大型ガラスハウス内のホウレンソウについてオキシダント障害の発生分布と、ハウス内の環境要素を調査し、相互の関係について検討した。

1. 調査方法

板前研究の大型ガラスハウスで調査を実施した。このハウスはトピカ工業のSⅡ型で、間口111m、延行153.1m、床面積350㎡の3連棟である。北側総面積換気層を備え、換気率45回/昼である。

ホウレンソウの健長調査は、天候・圃場・植え方の開放条件下と、天候や病害を除いて換気による換気条件の下の2層にわけて実施した。ハウス内の24〜28地点について、各サイトの15月について、オキシダント障害の発生した数を調査した。

ハウス内の環境要素を調査するため、オゾン濃度は京都大学電子KⅡ製オゾン計（モニター型），風速は熱線風速計，気温はオセマスター温度計をそれぞれ用い各調査地点とも地上50cmの高さで測定した。なお、その他の気象データについては、所内の測定値を用いた。

2. 結果および考察

1979年7月14日，湘南地域に0.1〜0.15ppmのオキシダントが発生した。当日は朝から快晴で、午前10時ごろまで風速1〜3m/secの北東風が吹き，その後は2〜3m/secの南東風になった。この気象条件は，当地域においてオキシダント污染が発生する典型的なものである。5）開放条件のハウス内には葉数の最もホウレンソウが発生していたが，產業物の発生にはオキシダントによる污染が発生した。障害の発生分布を調査したところ，ハウス内の風用側面から右側，ハウス中央部にかけて障害が減少する傾向がみられた。一方，ハウス内の風速分布を測定したところ，風芸側面ではホウレンソウの間が最も0.5〜1.0m/secの風速であった。一方，ハウス中央部の風速は0.5m/sec以下であり，風速が大きい箇所ほどホウレンソウのオキシダント障害が発生する傾向が見られた。

1979年9月23日にも0.1〜0.15ppmのオキシダントが発生した。この時のハウス内は強制換気条件により，葉数の大部分のホウレンソウが発生されていた。同様の条件にて，ハウス内のオキシダント障害の発生分布を調査したところ，ハウス側面から右側の空気入口近くの障害が多く，ハウスの中部近くは減少していた。一方，強制換気条件におけるハウス内の環境要素の調査を，同年10月に実施した。その結果，ハウス内のオゾン濃度は，空気入口から4mの地点では7ppm，23mの地点では4ppmと，それぞれ外気よりも低かった。また風速分布は，空気入口附近で1.5〜2.5m/sec，空気入口から3mの地点では約1.0m/sec，10mの地点では約0.5m/secであった。ハウス内のオキシダント障害と環境要素の関係は，オキシダント障害の少ない沿岸と風速が小さく，またオゾン濃度が若干減少する傾向がみられた。
このハウス内の光および気温分布は、ほぼ一定であり、また土壌含水量も一定になるように設定していた。したがってハウス内のオキシダント障害の発生状況は、風速と関係があるものと考えられ、ハウス中央部のオキシダント障害が少ないのは、その場所の風速が0.5m/sec以下であるためと考えられる。

Ⅲ 野菜類のオゾン感受性と風速の関係

前実験において、ホウレンソウのオキシダント障害は、風速により異なることが示唆された。ここでは室内実験においてオキシダントの主成分であるオゾンを、異なる風速条件および光条件のもとで野菜類に接種させ、野菜類のオゾン感受性と風速との関係を明らかにしようと試みた。

1. 方法

ホウレンソウ（深緑色、葉数10枚）、コマツナ（散生栽培で、葉数5.5枚）およびハツカダイコン（赤丸大10cm、葉数5枚）を0℃/2000マットで栽培して供試した。

風速条件の設定は、2つの塩化ビニール製の風洞に、供試植物を3ポットずつ設け、それぞれを一定のオゾン濃度に調整したグロースキャビネット内で配置した。風洞内の風速は、位置により若干異なっていたが、風洞の中央部における値を使用した。

オゾン濃度は、実験25ppm、湿度約80%で実施し、障害調査は接触後2日目に行った。

2. 結果および考察

ホウレンソウのオゾン障害と風速の関係を明らかにするため、春期に日射量650W/hr/m2のもとで0.24m/sの
オゾンを5時間、さらに秋期に日射量 55mcal/hr/hr のもとで 0.20 ppm のオゾンを5時間接触させた。その結果日射量の多少にかかわらず 0.1 m/sec の風速では、ホワレンソウのオゾン障害は著しく少なく、0.5 m/sec の風速では障害が增む傾向がみられた。日射量が比較的小さな 55 mcal/hr/hr のとき、風速 1.0 m/sec において、さらに障害が増した。しかし日射量 65mcal/hr/hr のとき、風速 1.0 ～ 2.0 m/sec において葉のしぼれ現象が生じ、オゾン障害は著しく増す傾向がみられた。

日射量 8 および 35mcal/hr/hr の条件で、ハッカダイコンにそれぞれ 0.14 ppm のオゾンを 55 時間接触させたところ、日射量が多い 35mcal/hr/hr では、オゾン障害が大いに現れる傾向がみられた。一方、日射量の多少にかかわらず、風速が 1.0 ～ 0.5 m/sec のとき、オゾン障害は少なく、強風が 1.0 ～ 2.0 m/sec に高まると、障害は著しく増加した。

コマズナに 0.25 ppm のオゾンを 5 時間接触させたところ、風速が大いにとなりつつオゾン障害が徐々ず現れる傾向がみられ、風速 25 m/sec において最も著しかった。

以上の結果、葉生種類のオゾン感受性は、風速に左右されることが明らかになり、風速条件により植物のオゾン取り込み過程が異なるために、オゾン障害の発生程度に差が生じるものと思われる。さて、植物のオゾン取り込み過程は、光合成における CO₂ の取り込み過程に類似しているものと推察される。竹林や CO₂ が外気から植物体内まで通路する過程を次のように説明している。すなわち CO₂ は、気流の影響の大気から、葉の表面に近い層を境界面を通して渡り、気孔から植物体に入り、葉肉組織を通り細胞内へ取り込まれる。この CO₂ の流れを、電流の流れに例えると、気流の影響の大気、層の境界層の抵抗、気孔の抵抗各段階、植物体への CO₂ の取り込み過程、各部分の抵抗抵抗に反比例し、大気と細胞内の CO₂ 浓度差順に比例する。風速により層の境界層の厚さが異なる、風速を高めるほどが薄くなって、層の境界層の抵抗抵抗が小さくなる。一方、気孔抵抗に関係する要素としては、気孔数、その大きさおよび開きやすさなどがある。以上は植物体への CO₂ の取り込み過程であるが、同じ気体であるオゾンについても同様に考えればよろ、本実験において風速が 0.5 m/sec 以下では、いずれの植物もオゾン障害の発生は少なく、この傾向は光合成速度と風速の関係に類似していた。このことは風速が小さいために層の境界層の抵抗抵抗が大きくなり、したがって植物体へのオゾン取り込み量が減少したためと推察される。一方、風速が 1.0 m/sec 以上の場合には、植物の
葉の内部へのオゾン侵入過程とオゾン障害の関係

野菜類のオゾン障害は、風速に著しく影響されることが明らかになり、このことから風速により葉内へのオゾン取り込み量が左右されるものと察知された。ここでは、さらに詳細な検討を行うため、アルミ箔を用い、葉内へのオゾン侵入過程とオゾン障害の関係を明らかにしようとした。

1. 方法

ホウレンソウ（葉数8枚）、ハッカダイコン（葉数6枚）およびコマツナ（葉数6枚）をa/5000ポットで栽培した。ホウレンソウは下から5〜6葉目の葉、ハッカダイコンは下から2〜4葉目の葉、コマツナは下から3〜4葉目の葉をそれぞれ供試した。

アルミ箔を葉を覆蔽することにより、1枚の葉にそれぞれ裏裏被覆、裏面被覆、両面被覆および無被覆の4処理区をめた。被覆処理はオゾン濃度直前に行い、各作物とも6反復で試験を実施した。

オゾンの接触は、各ポットをクローズキャビネット内（温度25℃、湿度60%、自然光）に放置して行い、0.45 nmのオゾンを10時間接触させた。障害調査およびクロロフィル含量の定量は、オゾン接触後1日目に実施した。

2. 結果および考察

アルミ箔を覆蔽することにより、処理区間でオゾン障害の発生程度が著しく異なった。しかしこの接触法で、ホウレンソウ、コマツナおよびハッカダイコンとも、ほぼ同じであった。すなわち無被覆区においてオゾン障害が著しく発生したにもかかわらず、両側被覆区では全く障害が発生しなかった。一方、片面被覆では、オゾン障害がある程度発生したが、明らかに裏面被覆区より裏面被覆区における障害程度が大きかった。この現象は供試葉を反転して光条件を変えた場合に同じ傾向がみられた。このこととは各処理区のクロロフィル含量とも関係し、オゾン障害の発生程度に応じてクロロフィル含量が減少していた。さらに、内部葉出力も関与しており、また同様のことが葉の厚さにより同様に影響を受ける場合もある。

葉の気孔分布は、葉の表面および裏面に多くの分布している。しかし、葉内へのオゾンの吸入が、気孔を通行することがされるからには、CO₂吸収と同様に葉の表面および裏面から葉内へ侵入するオゾンの量が多いものと考えられることとなっている。しかししながら、本実験ではオゾンが葉の裏面よりも表面に接触すると、障害がより発生しやすかった。

葉におけらオゾン障害は、形態症状あるいは機能障害に発生しやすいことが知られている。一方、オゾンは反応性に富み、いわゆる生物に吸収されやすく分解されるため、その性質が異なる。そのため葉内に侵入したオゾンが障害発生の作用点に達するまでに変化することが予想される。したがって葉内へのオゾンの侵入は、葉の表面および裏面の両面から行われることが考えられるが、オゾン障害が発生しやすい機能障害は近い表面からのオゾン侵入が、裏面からよりも、より大きく関与するものかもしれない。しかしながら、被覆処理により、光の環境条件が変化するので、葉の表面および裏面の気孔展開が異なることも考えられ、今後さらに詳細な検討が必要であろう。
Ⅴ 土壌のオゾン吸収能について

オキシダントの主成分であるオゾンは、反応性に富み、土壌に存在する様々な物質への吸収を生じる。このことから、これらの特性を解析的に検討した例は少ない。

ここで、比較的低濃度のオゾン発生条件における、土壌および堆積の土壌構成成分によるオゾン吸収速度を、室内でのモデル実験から求め、その結果から自然におけるオゾンに関する諸現象の解析を試みた。

1. 方 法

1) 試料

試料の概要は第1表に示した。土壤は深さ0～15cmの表土とし、風乾状態で供試した。カリオン系の酸化鉄、水酸化鉄、カルシウム、マグネシウム、不活性塩を用いた。実験は試料を用いた。試料を調製後粉砕し、70μMの細孔を経としたものをアロマフィンの試料とした。また、地下水をPH5.8のミセル水を使用した。

浸透試験の作図は、吸水試験を透過法および水柱法により試験し、PP 1.5、1.7、2.0、2.7および3.4の含水量に調剤した。

2) オゾン吸収速度の測定方法

容器にガラス製容器に入り、円柱体のガラス製皿（面積665cm²）を入れ、これに試料を200gそれぞれ、一定濃度のオゾンを20cm/s（波発射25cm/s）の割合で通じた。容器内の容器をに入れ、一定の時間で容器内を振動しながら、市販電気工学オゾンモニター（シーメンス）を用いて、容器内のオゾン濃度の推移を、時的に測定した。

2. 結果および考察

風乾した表土層に0.85％(CO)のオゾンを通気したところ、通気後より容器内のオゾン濃度は増加し、約15日後に通気したオゾン濃度の約20％に達した。しかし、その後は15時間経過しても容器内のオゾン濃度は、ほぼ一定であった。

次に通気するオゾン濃度をそれぞれ0.07、0.15および0.35％に変えたところ、いずれの濃度でも通気後約10分で、容器内のオゾン濃度は一定となった。そこでこのように定常状態におけるオゾン濃度(C)と流入気体のオゾン濃度(Co)との比、すなわちオゾン利用度(C/C)を求めたところ、Coの如何にかかわらず同じ値を得た。

したがってオゾンの低濃度の場合、土壌層内、通気状および容器内の相対濃度が一定なら、流入気体のオゾン濃度および通気時間のいかんにかかわらず、土壌の吸収によって生じる容器内のオゾン濃度の低下割合は一定となり、この場合における土壌のオゾン濃度は容器内のオゾン濃度(オゾン分圧)に比例することが明らかになった。

そこで0.85％のオゾンを3時間通気し、その中の試料について、容器内のオゾン濃度を測定したところ、石英や水は、ほとんどオゾンを吸収しなかった。一方、カオリノ・アロマフィン・酸化鉄・塩素酸およびペントナイトを容器内に入れたときのオゾン濃度は、風乾した土壌よりも低かったが、また同じ土壤でも水分含量が多少いとると容器内のオゾン濃度が異なる傾向がみられた。

供試試料のなかで容器内のオゾン濃度が最も低下したのは活性土であり、通気したオゾン濃度の約22％であった。

これらの結果は次の一般式によって表される。得られたデータを解析するため、吸収速度の概念を用いる。

\[V = \frac{F}{C} \]

\[V = \text{吸収速度} \]

\[F = \text{供試試料} \]

\[C = \text{オゾン濃度 (オゾン分圧)} \]

第2表 供試試料の特性

<table>
<thead>
<tr>
<th>試料</th>
<th>採取場所</th>
<th>水分含量(%)</th>
<th>TC</th>
<th>TN</th>
<th>PH</th>
<th>砂</th>
<th>腐植</th>
<th>CEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>火山灰土壌</td>
<td>三浦市塚原町511</td>
<td>2.5</td>
<td>14.0</td>
<td>9.0</td>
<td>0.5</td>
<td>5.2</td>
<td>1.5</td>
<td>2.50</td>
</tr>
<tr>
<td>海藻土壌</td>
<td>平塚市寺田町496</td>
<td>4.6</td>
<td>31.4</td>
<td>12.1</td>
<td>0.1</td>
<td>0.5</td>
<td>5.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

第7图 オゾン吸収実験装置の略図

A: 試料 B: ファン C: 空気入口 D: 空気出口
と、この吸収速度は容器内の実験条件によって異なる。
この実験で容器内のパネルの回転数を増すとオゾン吸収速度は大きくなることが認められている。したがって、ここでは得られたオゾン吸収速度から、条件の異なる条件も考慮して、そこでこの吸収速度の逆数をオゾン移動の抵抗（r）と仮定すると、この抵抗は容器内の抵抗（r_a）と空気抵抗（r_b）から成ると考えられる。

\[
\frac{1}{V} = r = r_a + r_b \quad (2)
\]

ここで完全な吸収体（r_b = 0）があれば、この実験条件における空気抵抗（r_a）が求められる。この実験では活性炭の吸収速度が最も大きかったので、ここでは活性炭の表面抵抗（r_a）を0と仮定すると、この実験条件の空気抵抗 r_a = 0.56 cm⁻¹ の値が得られる。

またオゾンのフラックスおよび吸収速度は、次式により求められる。

\[
F = \frac{C_0 - C_a}{S} \cdot A \quad (3)
\]

\[
V = \frac{F}{C_s - C_s} \cdot S \cdot A \quad (4)
\]

A：通気量
S：試料面積
この実験では通気量 2 L/min, 試料面積 66.5 cm² である。\[V = 0.501 \frac{C_{o} - C_{a}}{C_{s}} \text{ (cm s}^{-1} \text{)} \]（5）

以上の方法により求めた、種々の土壌および土壌構成 度のオゾン吸収速度ならびに表面抵抗を第2表に示し た。土壌構成分によりオゾン吸収能は著しく異なり、 表面積の小さい石英ではほとんどオゾン吸収能は認められなくなる。

第2表 土壌等によるオゾンの吸収速度および抵抗

<table>
<thead>
<tr>
<th>試料</th>
<th>吸収速度 (cm/sec)</th>
<th>表面抵抗 (sec/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>石英</td>
<td>0.01</td>
<td>6.6</td>
</tr>
<tr>
<td>カオリ</td>
<td>0.10</td>
<td>2.2</td>
</tr>
<tr>
<td>アロフェン</td>
<td>0.47</td>
<td>1.6</td>
</tr>
<tr>
<td>ベントナイト</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>硬化アルミニウム</td>
<td>0.55</td>
<td>2.5</td>
</tr>
<tr>
<td>硬化鉄</td>
<td>0.61</td>
<td>1.1</td>
</tr>
<tr>
<td>湿石灰</td>
<td>0.39</td>
<td>2.0</td>
</tr>
<tr>
<td>活性炭</td>
<td>1.78</td>
<td>—</td>
</tr>
<tr>
<td>石英土壌（風乾）</td>
<td>0.71</td>
<td>0.9</td>
</tr>
<tr>
<td>火山灰土壌（風乾）</td>
<td>0.83</td>
<td>0.6</td>
</tr>
<tr>
<td>" (PF3.4)</td>
<td>0.83</td>
<td>0.7</td>
</tr>
<tr>
<td>" (PF27)</td>
<td>0.55</td>
<td>1.3</td>
</tr>
<tr>
<td>" (PF20)</td>
<td>0.20</td>
<td>4.5</td>
</tr>
<tr>
<td>" (PF17)</td>
<td>0.14</td>
<td>6.4</td>
</tr>
<tr>
<td>" (PF15)</td>
<td>0.04</td>
<td>2.2</td>
</tr>
<tr>
<td>" (最大容水量)</td>
<td>0.02</td>
<td>41.1</td>
</tr>
<tr>
<td>水</td>
<td>0.00</td>
<td>∞</td>
</tr>
</tbody>
</table>

空気抵抗 = 0.96

れなかった。粘土砂岩ではベントナイトのオゾン吸収能 が最も大きく、次いでアロフェン、カオリが多くなり、粘土砂岩の表面積の大きさに比例して いると考えられた。硬化剤である硬化アルミニウムおよび熟化剤、いずれもオゾンを吸収したが、その程度 は他の物質より特に大きなものではなかった。一方、オ ゾンは1.0％の水に0.49％容量（0.01, 1気圧）が溶け るが、本実験における水のオゾン吸収速度はほとんど認められず、低濃度のオゾンに対する水のオゾン吸収能は、 非常に小さいものと考えられる。

風乾した土壌のオゾン吸収能は非常に大きく、風乾土 壌に含まれたベントナイトの同様度であり、火山灰土壌は活 性炭を除く他試料、土壌構成成分のいずれよりも大きな 値を示した。火山灰土壌は腐植塚に富んでいるので、腐植の

オゾン吸収能が大きいのでないかと推察される。一方、水 分含量が高くなり、浸水状態の土壌ほど吸収が低下する傾向がみ られ、同じ大気汚染物質である過酸化イオウと逆の結果 があった。このことは水に対するオゾンと過酸化イオウの

吸収速度あるいは通過速度の差異によるものと考えられ

一般にオキシダント汚染が発生する気象条件では、土 壌が乾燥していることが多い。したがって土壌は、大気 汚染物質であるオゾンをかなり吸収する能力をもつ、 自然界においてオゾンを浄化する有益な働きをしている ものと推察される。

VI. 被覆材および植物によるオゾン濃度 と風速の減少効果

土壌はオゾンをかなり吸収する能力を持ち、野外にあ るオゾン濃度の分布に影響を与えていることが、先の 室内実験から推察された。もしも人为的に簡便な方法で、 野外におけるオゾン濃度分布をコントロールすることが できればならば、農作物のオキシダント障害を減殺するこ とが可能であろう。しかし、野外におけるオキシダント 障害分布を詳しく調査した報告など、人为的に野外の オキシダント障害をコントロールした例は少ない。

そこで、野外におけるオゾン濃度分布および被覆 材の影響を調査し、さらに植物薬品中のオゾン濃度分 布を測定することにより、植物等によるオゾン濃度の減 少効果を検討した。またオキシダント障害の発生と関係 が深い風速分布について検討を行い、農作物のオキシダ ント障害を物理的に回避するための基礎資料を得ようと 試みた。

実験I. 被覆材のオゾン濃度と風速分布にお よぼす影響

1) 方法

所用した場（神奈川県）において、巾1.8 m、長さ7 m の敷設用コンクリート（自石300）を、1 mの間隔を もって東西方向に7列、南北方向に1列、パレットに併せた。各コンクリート内のオゾン濃度と風速の測定は、地上20cmの高さにお いて数時間にわたったり実施し、その測定データは、 所内の微小風を用いた。

2) 結果および考察

はじめに種々のオゾン濃度および風速の垂直分 布を測定した。測定時、平均風速5 m/sec、風向SW であり、土壌表面は乾燥していた。オゾン濃度の垂直分 布は、地上10cmで約10ppm、地上5cmでは約50ppmほど、 それから地上150cmにおけるオゾン濃度より減少してい
た。一方、風速の垂直分布は、地上10cmでは約40cm、地上1cmでは約70cmほど、それぞれ地上150cmにおける風速より減少していた。観測における地表面近くのオゾン濃度の低下は、土壌からのオゾン吸収能により生じたものと考えられ、また地表面近くでは風速が弱い、したがって土壌からのオゾン送入量が少ないものと推定される。

次に、カンレイシャを構成に張り、風上からの各カンレイシャ間におけるオゾン濃度および風速の水平分布を測定した。測定時の気象是、平均風速3m/sec、風向Nであり、土壌表面は乾燥していた。その結果、外気に近いカンレイシャ間のオゾン濃度および風速は減少しており、その程度はカンレイシャ1枚風上および内側に入ることが、オゾン濃度は約4倍、風速は約47％ずつ減少するものと推定される。

実験II 植物群落内のオゾン濃度および風速分布

1）方法

5種類の植物群落において、オゾン濃度の垂直分布を測定した。地表面では地上10cmの高さにおける風間のオゾン濃度の水平分布を測定した。

供試した植物群落は次のとおりである。ヒマワリ（コングヒマワリ）……1975年5月10日付。植生密度60株/㎡ トウモロコシ（デントコーン）……1976年6月5日付。南北樹で平均60cm。株間18cm　落花生（千葉半生）……1977年5月6日付。南北樹で樹間30cm。株間25cm　水稲（クサナギ）……1976年6月5日種苗機械移植。東西樹で樹間50cm。株間16cm　陸稲（農林省2号）……1977年7月1日ドリル播。東西樹で樹間30cm。300株/㎡

2）結果および考察

植物群落内におけるオゾン濃度の垂直分布を測定したところ、外気より各群落内のオゾン濃度は低下していたが、その傾向は植物の種類により異なった。草本類のヒマワリおよび落花生では、葉面積の大きい箇所でオゾン濃度が急に低下する傾向がみられたが、禾本科のトウモロコシ、水稲および陸稲ではそのような傾向は認められなかった。禾本科の植物群落では、葉よりオゾンが吸収あるいは分解されたとしても、群落内部まで風が入りにくいので、外気のオゾンがすみやかに群落内へ供給されることによってもと考えられる。

一方、地表面に近づくにつれて、各群落ともオゾン濃度は急激に減少していたが、陸稲群落よりも水稲群落における減少傾向が少なかった。水稲群落は液状状態であり、土壌よりも水のオゾン吸収能が著しく小さいため、この点が生じたものと考えられる。なおヒマワリ群落は地上75cmのオゾン濃度が若干高くなっていたが、この時期におけるヒマワリの下葉が、かなり枯れ上ってい
第14図 植物群落内のオゾン濃度、風速および光分布

- オゾン濃度比率（%）
- 風速比率（%）
- 比較光量（%）

葉面積指数（LAI）

<table>
<thead>
<tr>
<th>番号</th>
<th>作物名</th>
<th>O₃濃度 (高500cmm)</th>
<th>平均風速 (高500cmm/s)</th>
<th>風向</th>
<th>気温 (℃)</th>
<th>測定日</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ヒマワリ</td>
<td>0.4</td>
<td>5.5</td>
<td>SSW</td>
<td>29</td>
<td>1976.7.28 14:00</td>
</tr>
<tr>
<td>B</td>
<td>トウモロコシ</td>
<td>0.6</td>
<td>4.0</td>
<td>S</td>
<td>31</td>
<td>1976.8.2 11:00</td>
</tr>
<tr>
<td>C</td>
<td>落花生</td>
<td>0.6</td>
<td>4.0</td>
<td>SW</td>
<td>26</td>
<td>1977.10.5 13:00</td>
</tr>
<tr>
<td>D</td>
<td>水稲</td>
<td>0.5</td>
<td>2.0</td>
<td>SSW</td>
<td>25</td>
<td>1976.8.3 12:00</td>
</tr>
<tr>
<td>E</td>
<td>陸稲</td>
<td>0.5</td>
<td>5.5</td>
<td>E</td>
<td>25</td>
<td>1977.10.5 11:00</td>
</tr>
<tr>
<td>F</td>
<td>陸稲（水平分布）</td>
<td>0.5</td>
<td>3.5</td>
<td>SW</td>
<td>25</td>
<td>1977.10.5 15:00</td>
</tr>
</tbody>
</table>
たため、直接外気が群落側面から内部へ入ったものと思われる。

遮蔽群落におけるオゾン濃度および風速の水平分布を調査したところ、風の流れが群落内に流入するため、オゾン濃度は風速とともに減少する傾向がみられた。その程度は、群落内部に向かって減少することにより、オゾン濃度は約30％ずつ減少するものと推定された。

以上の結果、被覆資材や植物は、オゾン濃度の減少効果があると考えられることから、その作用は、2つの理由があるものと思われる。一つは、被覆資材や植物が直接オゾンを吸収あるいは分解することにより生じるものである。しかしながら野外においては、外気からのオゾン供給量が多いときに、オゾン減効果としては少ないものであろう。もう一つの理由は、被覆資材や植物が風をさえぎるために、外気からのオゾン供給量を少なくする効果である。したがって、被覆資材のオゾン吸収特性により、地表のオゾン濃度は減少しており、この効果は野外のオゾン濃度分布にかなり影響するものと考えられる。

 VII 被覆資材によるホウレンソウのオキシダント障害の軽減効果

野菜類のオゾン障害の発生程度は、風速に著しく左右され、風速が0.5m/sec以下では、オゾン障害が減少する傾向が見られた。また被覆資材や植物には有効な効果があり、外気からのオゾン供給量を減少させることにより、オゾン濃度をコントロールできる可能性があると確認された。そこで、被覆資材によってホウレンソウの被覆資材を用いてトンネル状態下での被覆資材によるオキシダント障害の軽減効果を検討した。

1. 方法

所内では実験において、区間を5.5m、東西方向2.2mのペットを作り、固定してホウレンソウ（福島）を1980年6月4日に植えた。

被覆資材は1.6mm厚のビニール、白絹300のカレンチャーおよびカレンチャー部分が70cmのビニペットを用いた。

被覆資材はトネル直線状に設け、通常は上方のみを覆蔽しておき、高濃度のオキシダント衝撃が予想される場合は側方もあわせて覆蔽した。この場合、カレンチャー区とビニール区の側方の被覆資材は、カレンチャーを3重張りにした。

トンネル内のオゾン濃度および気温の測定は8月中旬に実施した。オゾンは地上20cmにおける濃度をケミカルにより、気温は地上15cmにおける温度を熱電対式温度計を用いて測定し、気温は測定風速計でそれぞれ測定した。なお気温データは所内の気温計を用いた。

2. 結果および考察

上方の被覆資材は6月19日から行った。6月25日に0.1μg/m³以上のオキシダント汚染があったので、側方もあわせて被覆した。その後ホウレンソウのオキシダント障害が確認されたので、6月28日に被覆調査および生育調査を実施した。

各被覆材のオキシダント障害程度およびホウレンソウの生育状況を第14図に示した。ビニネット区およびカレンチャー区において、ホウレンソウの被覆資材によるオキシダント障害の軽減効果が観察された。
レンゾウ区のホウレンソウの生育は、無処理区よりも良好であったが、日照量が減少するため、乾燥症状がまっくろに比べて悪かった。またビニル区の中央部では、乾燥により生育が若干不良であった。

オキシジオント污染日に側方を被覆しない場合には、各処理区ともオキシジオント障害の発現効果は、ほとんど認められなかった。ビニレット区では、ホウレンソウの乾燥状態が悪かったが、オキシジオント感受性が高まったものと考えられ、むしろオキシジオント障害が低減される傾向がみられた。

一方、オキシジオント污染日に側方を被覆した場合には、いずれの処理区ともオキシジオント障害は減少した。特にビニレット区では、下位葉に若干障害が発生したにすぎなかった。

トンネル内におけるオキシジオント障害の発生分布は、被覆方法により異なっていた。すなわち上向き通気口のあるレンゾウ区で被覆したビニレット区では、中央の高所障害が多く、一方、ビニレットおよびカンレンゾウ区では側の低地で高所が多発した。なお污染日の各側面被覆区における発生気温は、ビニレット区37.0℃、カンレンゾウ区34.5℃、ビニレット区42.0℃、無処理区34.0℃のことをし、ビニレット区では高所のため、若干葉のしぼれが見られた。

快晴の8月12日、11時まで風速2.0m/s以下の微風であり、12時以降は風速40m/s、風向E～SWであった。全面被覆処理区内のオゾン濃度を測定したところ、ビニレット区およびビニレット区とも、常に無処理区よりオゾン濃度が低い傾向がみられた。しかしながら、その程度は風速に左右されており、微風時のオゾン濃度は、無処理区より22～27％程度減少していた。しかし12時以降風が強くなった時のオゾン濃度の減少効果は5～10％に過ぎなかった。

一方、各全面被覆処理区との気温は、いずれも無処理区より高く、その程度は風が弱いときほど高い傾向を示した。最高気温はビニレット区45.6℃、ビニレット区34.0℃、カンレンゾウ区37.5℃で、無処理区よりいずれも29～11.2℃高かった。なお全面被覆処理区の風速は、いずれも0.5m/s以下であった。

以上の結果、オキシジオント污染日にトンネルの上部だけならびに側方をあわせて被覆した場合、ホウレンソウのオキシジオント障害の発現効果が高まったことが明らかになったが、その原因として次の2つが考えられる。一つはトンネル内の風速が0.5m/s以下となったことである。もう一つは、トンネル内には土壌や堆積物によりオゾンの多くが吸収され、分解されたこと、さらに外気からのトンネル内へのオゾン供給量が少ないため、トンネル内でのオゾン濃度が若干減少し、オゾン分圧が低下したことを考えられる。この結果、ホウレンソウに取り込まれるオゾン量が少なくなり、オキシジオント障害が発現したものと考えられる。

一般に、オキシジオントがある程度以上にならなければ、可視障害はほとんど発生せず、さらに風速が上昇すると、障害が急激に増加することが知られている。またトンネ
トンネル内の気候およびオゾン濃度の減少効果は、気象要因特に風速に著しく左右されるが、オキシダント污染日は比較的風が弱い場合が多く、被覆処理によるオキシダント障害の緩和効果は高いものと期待される。

トンネル内の気温は被覆方法により異なり、上方をビニール被覆した場合には気温の上昇が著しく、ホスリンソウに更新障害が発生することが考えられる。一方、上方をカレンジンで被覆したビニール被覆は、トンネル内の気温の上昇が比較的小なく、またオキシダント障害の緩和効果も高いため、障害緩和策として有望である。

しかしながら高濃度のオキシダント汚染を予測して、側方の被覆を行うことによる労働者の面や、被覆材材尋入のための延長の点など、実用化には問題が多い。現在、両上昇効果および日除げ効果として、ホスリンソウの被覆栽培が行われている。そこで今後はこれら栽培面からの効果とあわせて被覆処理によるより効果的な経済的なオキシダントの障害緩和法について検討する必要がある。
総合考察

工場や自然環境において化学会燃焼の影響下に発生する窒素酸化物と炭化水素が、大気汚染の基盤を受け光化学反応を起こすことにより、オキシダントが生成される。この反応は大気中の生じるので、二次汚染源であるオキシダントは、大気中に多量に存在し、またオキシダント汚染が地域性に発生する。したがって同じ大気汚染源でも、汚染源の存在部位により一次汚染源である細菌イオン、硫化水素、塩素等あるいは臭化メチル等とは、汚染現象が異なり、一次汚染源の発生源が、ある特定の場所に限られ、自然条件下での汚染源が特異性強い場合において被毒が多発する危険性が多い。それに対して、オキシダントは土壌等により分解あるいは吸収され、よって、無風条件下ではその生成するオキシダント濃度が減少する。したがって新たなオキシダントが大気中から供給されやすくなり、また仮設光源からオキシダントの収束においてが多くのある場合でも、オキシダント汚染が再発するものと考えられる。オキシダントによる植物障害の発生に関与する環境因子はいくつかあるが、その中でも風力による重要な因子であると考えられる。

広域の汚染もしくは強風性のあるオキシダントによる農作物の被毒を回避することは、非常に難しく考えられる。野菜類の他にも、イネ、大豆、果樹、桑糸あるいは茶等の特定の植物において、オキシダント障害が認められている。前述のとおり、ここで検討されたオキシダント濃度の環境汚染、ここでの農作物についての可能性を示しただけである。さらに被毒依存因子としては、風速の影響を受ける越冬や越夏に影響されることになる。また農作物におけるオキシダントの影響において、オキシダントの持続的、急性的発生する可能性の他に、土壌汚染、生物抑制、栽培あるいは栽培等の影響もしくは急性的な被毒が報告されている。こので検討した物理的化学的あるいは生理的化学的では、本質的な問題の解決はせずにしまい、しかし植物のオキシダント被毒を回避する方法としては、オキシダント汚染を低減するような措置をとることが、適当な方法が見当らない。今報告で検討した光化学酸霧による農作物被毒の低減法については、現状の汚染環境における被毒回避の可能性と、その展開を示したものといえよう。

要約

光化学オキシダントの農作物に対する影響障害の作用操作を明らかにするため、大気ガス濃度を栽培されたホウレンソウの障害分布調査と、三の室内実験を実施した。さらにホウレンソウに対するオキシダント障害の明解化法について検討したところ、次のことが明らかになった。

1) 光化学オキシダントによるホウレンソウの障害分布と大気ガス中の風速との関係について調べたところ、風速が影響のあることが確認された。しかし、風速0.5m以下の風速の場所では、障害が少なかった。一方、大気ガス濃度のオゾン濃度は、外よりも若干低い傾向を示した。

2) 風速の異なる4つの風向を用い、グロースキャビネット内でオゾンを接触した実験においても、野菜類のオゾン濃度の影響は、風速によって大きく、風速0.5m以下の風速で障害は少なかった。

3) 風速の影響を押さえ込み、オゾン濃度の関係を明確にするため、アルミ板で上の表面に風面を被覆してオゾンを接触した。その結果、被覆風速は葉の表面よりも表面にオゾンを接触した場合に、より多く多発することを確認した。

4) 土壌と土壌組成成分のオゾン吸収速度を、比較的低風速の条件において、風速を制御した。その結果、水、石炭及びカオリンのオゾン吸収は、ほとんど認められなかったが、プロフェン、ベンゾナイド、酸化アルミニウム及び酸化物はオゾン吸収を認めた。一方、風吹きさらしのオゾン吸収は蒸発した土壌組成成分よりも高く、活性炭に次いで高かった。しかしながら土壌水が高く、オゾン吸収は低下した。

5) 風速の影響を考慮して被覆材を用いた被覆のオゾン濃度は、大気中のそれよりも低く値を示し、その減少程度は風速に影響される。被覆材や植物が風をなぞらえるため、大気中のオゾン吸収量が減少し、さらに被覆基材の土壌がオゾンを吸収する抑制を示すために、このオゾン濃度の減少が生じるものと考えられた。

6) オキシダント濃度が高まったとき、植物の上部と側面に比、三の中質材を覆い、再現性のオキシダントに対するオキシダント障害の低減効果を検討した。その結果、オキシダントによる被毒が、いずれの処理においても低減した。特に、上部が変わらなかった、側面はビニールで被覆したものは、オキシダントの障害回復に有効であった。

引用文献

2) 服田孝子．寺門和也：大気汚染研究, 9, 722～728 (1975)
3) FURUKAWA, A. & KADOTA, A.: Environ. Pollut., 11, 1～7 (1975)
7) 篠島 雅，協田惟雄，大平俊男：東京都公害研究報告，4, 105～108 (1975)
8) 神奈川県環境部（1979）：光化学公害の現状と対策
9) 鎌倉地方公害対策推進本部大気汚染金部会 一部三県公害防止協議会：昭和54年度光化学スモッグによる植物影響調査報告書（1982）
12) 松岡義浩：大気汚染研究，11, 195～203 (1976)
13) 尾崎正之：信州野菜の新技術，誠文堂新光社，28～34 (1981)
14) 中村 拓，松本昭一，太田俊充，松川三郎：大気汚染研究，8, 559 (1974)
15) 中村 拓：信州県報告，10, 30, 1～68 (1979)
18) 産技術研究農業化研究所：大気汚染物質に対する植物感受性と施設条件，農林水産技術研究報告簿，335～357 (1977)
19) 野内 弘，飯島 雅．協田 正，大平俊男：東京都スモッグに関する調査研究，3，東京都公害研，583～593 (1979)
20) 大崎保夫，和地 淑，平塚孝之：光化学スモッグによる農作物被害の解析と対策に関する研究，農林水産技術研究会議（1979）
21) 大崎保夫，矢吹義一，前野通雄：神奈川農業研，121, 45～50 (1980)
23) 篠原俊清，福田三千夫：関山たばこ試験場，53, 25～36 (1975)
24) 篠原俊清，山本義夫，北野 博，福田三千夫：関山たばこ試験場，15, 5～21 (1975)
25) 高崎光夫，前野通雄，水沢正央：神奈川県農業研，115, 45～52 (1975)
26) 正之藤原，今泉誠子，和田茂德，須山 興：日農記，44 (2), 178～184 (1975)
27) 須山 興，星野昭太郎，篠原俊清，渡辺健一：関山たばこ試験場報告，53, 57～49 (1975)
28) 大気汚染研究全国協議会第7回小委員会報告：大気汚染物質収集実験（1974）
29) 高橋雄雄，前野通雄，高木正幸雄編：農作物良質土壌肥料大事典，農賢社（1976）
30) 髙崎 強，松岡義浩，森川克紀，松丸耕夫，白鳥孝治：日農記，44 (別2), 87～88 (1975)
31) 武田友之郎：農業気象，25 (1), 45～53 (1969)
32) T. A. Dunning & Walter W. Hack: Journal of the Air Pollution Control Assocation, 27 (2), 382～386 (1977)
34) 矢吹義一，大崎保夫，前野通雄，篠崎光夫，水沢正清：神奈川農業研，120, 27～39 (1978)

Summary

In order to investigate the mechanism of action on visible injury to vegetables caused by photochemical oxidants, distribution of damage to spinach cultivated in green house and several laboratory were studied. At the same time, control methods for reducing the injury were also examined. The results obtained were as follows:

1) As the results obtained from the relationship between the degree of injury caused by...
photochemical oxidants on spinach and wind velocity in large sized green house, more leaf damage was observed on the area where stronger wind were blowing. But it was little appeared in area of wind velocity of less than 0.5 m/sec. And also, concentration of atmospheric ozone in large sized green house were found to be lower than those of outdoors. The experimental results in growth cabinet which was attached with ozone fumigation system and four wind tunnels having different wind velocities were as follows: visible injury of vegetables were also dominated by wind velocity when it was less than 0.5 m/sec and a little leaf damage was also appeared at this wind velocity.

2) Experiments were carried out in order to investigate the relationship between uptaking of ozone by leaf and its visible injury, while the surface or reverse of leaf was covered with aluminum foil. As a result, visible injury on the leaf was recognized when ozone was fumigated on the surface of leaf rather than those of reverse sides.

5) Laboratory studies were undertaken at relatively low concentration of ozone under an aerated condition, and adsorption rate of ozone was investigated using different kinds and constituents of soils. As a result, water, quartz and kaolin have almost no capacity to adsorb ozone; and illitohene, bentonite, Al₂O₃ and Fe₂O₃ was found to have adsorption capacity. On the other hand, the adsorption rate of air dried soils were higher than those of soil constituents, but next to activated charcoal. However, more the soil moisture content was increased the more adsorption rate of ozone was decreased.

4) Atmospheric ozone concentration in the inside of plant communities and in covered areas were lower than those in the outdoors. And the degree of lowering was influenced by wind velocity. The concentration of atmospheric oxidants was clearly lower than those of environment due to interrupting effect of wind by plants, covering materials and adsorption rate of ozone by surface soil.

5) Effect of atmospheric oxidants to spinach planted in summer covered on the upper parts and both sides of row by several kinds of covering materials was investigated, when the concentration of atmospheric oxidants was remarkably increased. As a result, visible injury by the atmospheric oxidants was recognized in any kinds of covering materials used. It was recognized that injury in vegetables was caused by photochemical oxidants when cheese cloth and vinyl were used as the covering materials on the upper part and both sides of the row.