有機農業の技術的評価（第1報）
−有機栽培が野菜の収量および土壌に及ぼす影響−

山田 裕・鎌田春海

Agricultural Technological Evaluation on Organic Farming and Gardening.

Hiroshi YAMADA and Harumi KAMATA

緒言

有機農業に関する人々の関心は、農業者よりも、むしろ消費者でより高い。それは、量より質、とりわけ安全な食品を口にしたいという消費者の選択が、その背景になっているものと考えられる。さらに、農業者においても、化学肥料の汚染や農薬の多量使用で、土壌、生態系を悪化させ、健康に対する危険がある等改善すべき点も存在する。

有機農業の成立条件は、作物の栽培時期や種類、さらには同じ種類であっても、品種によって大きな違いがあることが予想される。また、一口に有機農業といっても、現実には農業や化学肥料の使用を全面的に否定するものから、多少は容認するものまで、内容は直ちにわたっており、この問題の議論を一層複雑なものとしている。

しかし、有機栽培の「複合汚染」[1]は、この問題に一石を投じ、これを契機に有機農業を実践する農家が増加したことも事実である。海外においても、米国農務省の研究調査班による「有機農業に関する報告と勧告」[2]（日本有機農業研究会訳：アメリカの有機農業）やEC（欧州共同体）他による有機農薬の使用やその生産基準が公表される[3]などして、行政を含め関心の広いことがわかる。

著者らは、有機農業に肥料および農薬の両の要素があると考え、有機農業の成立条件を主として土壌肥料的な側面から評価するという観点から、1978年より9年間にわたって、この課題に取り組んできた。その内容は、無機肥料および有機肥料が作物生育や地方要因に及ぼす影響、さらに農業の散布の有無と作物生育の関係を中心に検討したものである。その結果、肥料の種類が野菜の生育や土壌の理化学性に及ぼす影響について、新たな知見を得たので、とりまとめ報告する。

本試験を実施するに当たり、日本大学農薬化学部助手山田和久氏には、試料の分析などに多大な御協力をいただき、本稿をとりまとめに当たり、神奈川県肥料検査所長松崎敬美氏に御校閲をいただいた。ここに記して感謝の意を表する。

試験方法

1. 栽培方法

試験は神奈川県平塚市寺田橋の神奈川県農業総合研究所内の試験圃場で実施した。土壌は気温低地中の藤代統（結植株木，土性SCL）に属し、供試面積は1区53㎡とし、試験区の構成は第1表に示すように、化学肥料単用区、化学肥料・牛ふん堆肥単用区、菜種油粕糞用区、牛ふん堆肥単用区の4処理とし、さらにそれぞれの処理に対し、農薬散布の有無を加えた合計8処理区とした。農薬散布は神奈川県の病害虫雑草防除基準[4]に準ず、適宜実施した。なお、除草剤は使用せず、手取り除草とした。
第１表　試験区の構成

<table>
<thead>
<tr>
<th>No</th>
<th>肥料の種類</th>
<th>麦の使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>化学肥料単用区</td>
<td>有</td>
</tr>
<tr>
<td>2</td>
<td>化学肥料単用区</td>
<td>無</td>
</tr>
<tr>
<td>3</td>
<td>化学肥料・牛ぶん堆肥加用区</td>
<td>有</td>
</tr>
<tr>
<td>4</td>
<td>化学肥料・牛ぶん堆肥加用区</td>
<td>無</td>
</tr>
<tr>
<td>5</td>
<td>異種油粕単用区</td>
<td>無</td>
</tr>
<tr>
<td>6</td>
<td>異種油粕単用区</td>
<td>無</td>
</tr>
<tr>
<td>7</td>
<td>牛ぶん堆肥単用区</td>
<td>有</td>
</tr>
<tr>
<td>8</td>
<td>牛ぶん堆肥単用区</td>
<td>無</td>
</tr>
</tbody>
</table>

施肥量は作物の生育に最も関係があると考えられる窒素量を100％と仮定し、化学肥料単用区の窒素施肥量と同一とした。化学肥料は複合摂加料（14-14-14）使用した。化学肥料・牛ぶん堆肥加用区は牛ぶん堆肥の耕作を80%相当量とし、10アール当たり2トンを化学肥料に加えて施肥した。

牛ぶん堆肥は全量元肥として全面施肥した。化学肥料および異種油粕は分施し、元肥を全面施肥、追肥を減施とした。10アール当たりのN, P2O5, K2Oの施肥量は冬作キベツが各25kg, 夏作キベツが各20kg, レタスが各24kg, タマネギが各18kgとした。土壌の塩基化は年1回、夏作作付け前に石灰剤を50%、土壌塩基度25%を基準に、酸性炭酸カルシウム、水酸化アルミ土肥料を補正した。栽培密度はキベツが60×40cm、レタスが60×30cm、タマネギが60×10cmとした。作物の栽培耕作要領は第2表に示した。供試有機質肥料および資料の化学性を第3表に示した。栽培試験中に使用した農薬の種類と散布回数を第4表に示した。農業散布は土壌として多用途のキベツで実施し、冬作レタスで殺虫剤、タマネギの一部で殺虫剤と殺虫剤を使用したが、1, 5, 7, 11, 13作の農業散布に

第２表　年度別の作物概要

<table>
<thead>
<tr>
<th>作数</th>
<th>冬作物</th>
<th>夏作物</th>
<th>栽培期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>キベツ1</td>
<td>キベツ2</td>
<td>78.11〜79.5</td>
</tr>
<tr>
<td>2</td>
<td>レタス1</td>
<td>キベツ2</td>
<td>80.3〜80.5</td>
</tr>
<tr>
<td>3</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>81.8〜81.11</td>
</tr>
<tr>
<td>4</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>82.8〜81.11</td>
</tr>
<tr>
<td>5</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>83.1〜83.6</td>
</tr>
<tr>
<td>6</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>84.8〜84.11</td>
</tr>
<tr>
<td>7</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>85.8〜85.11</td>
</tr>
<tr>
<td>8</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>86.8〜86.11</td>
</tr>
<tr>
<td>9</td>
<td>タマネギ4</td>
<td>キベツ2</td>
<td>87.6〜87.6</td>
</tr>
</tbody>
</table>

注）品種1：金系301, 2：坂田中早生2号, 3：ベンレーキ, 4：三宮丸, 5：清浦樫早生

定区および当区からの無布区は無農薬で栽培した。

2. 分析方法

（1）土壌分析
作物収穫後の土壌を採取し、ガラス室内で風乾し、2 mmのふるいを通過した風乾土を供試試料とした。
土壌の化学性は常法101により分析した。ただし、有機態炭素はトルオーグ法を用いた。交換性塩基および陽イオン交換容量（CEC）は、ショーレンバーーガー法により抽出し、それぞれ原子吸光光度法およびホールドール法により定量した。全炭素および全窒素、微粉末を柳本CNコーダーMT600により定量した。

（2）可溶性塩素
乾燥10 g相当分の風乾土を100mlのガラスびん（UMサンプルびん）にとり、最大容水量の60%相当量の水を添加し、ポリエチレンフィルムでふたをして、30℃の恒温器で4週間培養した。ただし、加水分解時に試験開始より採取した生土を水抽出し、その希釈液1 mlを添加した。
培養終了後、10％塩化カリウム溶液で無機態塩素を抽

第3表　施用有機質肥料の化学性（％）

<table>
<thead>
<tr>
<th>質材</th>
<th>水分</th>
<th>T-C</th>
<th>T-N</th>
<th>C/N</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>MgO</th>
<th>Na2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>牛ぶん堆肥1</td>
<td>70±10</td>
<td>28.4±6.1</td>
<td>1.7±0.4</td>
<td>15±4</td>
<td>2.7±0.9</td>
<td>1.0±0.4</td>
<td>3.9±0.7</td>
<td>1.4±0.3</td>
<td>0.4±0.1</td>
</tr>
<tr>
<td>異種油粕2</td>
<td>5.9±0.3</td>
<td>2.6±0.2</td>
<td>1.4±0.1</td>
<td>0.8±0.1</td>
<td>0.9±0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注）1：乾物中, 2：現物中
<table>
<thead>
<tr>
<th>作数</th>
<th>作目</th>
<th>使用剤および散布回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>キャベツ</td>
<td>無散布</td>
</tr>
<tr>
<td>2</td>
<td>キャベツ</td>
<td>ランネット水和剤×3，D D V P乳剤×1，ダイセン水和剤×1</td>
</tr>
<tr>
<td>3</td>
<td>レタス</td>
<td>トップシンM水和剤×2</td>
</tr>
<tr>
<td>4</td>
<td>キャベツ</td>
<td>ランネット水和剤×3，D D V P乳剤×1，バダン水溶剤×1</td>
</tr>
<tr>
<td>5</td>
<td>タマネギ</td>
<td>無散布</td>
</tr>
<tr>
<td>6</td>
<td>キャベツ</td>
<td>ランネット水和剤×3，バダン水溶剤×1</td>
</tr>
<tr>
<td>7</td>
<td>タマネギ</td>
<td>無散布</td>
</tr>
<tr>
<td>8</td>
<td>キャベツ</td>
<td>ランネット水和剤×3，トクチオン乳剤×1，ダイセン水和剤×1</td>
</tr>
<tr>
<td>9</td>
<td>タマネギ</td>
<td>マラソン乳剤×1，ジマンダイセン水和剤×1</td>
</tr>
<tr>
<td>10</td>
<td>キャベツ</td>
<td>ランネット水和剤×3，トクチオン乳剤×2，ダイセン水和剤×1，ベンレット水和剤×1</td>
</tr>
<tr>
<td>11</td>
<td>タマネギ</td>
<td>無散布</td>
</tr>
<tr>
<td>12</td>
<td>キャベツ</td>
<td>オルトララ精剤×1，ランネット水和剤×3，トクチオン乳剤×3</td>
</tr>
<tr>
<td>13</td>
<td>タマネギ</td>
<td>無散布</td>
</tr>
<tr>
<td>14</td>
<td>キャベツ</td>
<td>ハクサップ水和剤×3，D D V P乳剤×1</td>
</tr>
<tr>
<td>15</td>
<td>タマネギ</td>
<td>ダイアジノ乳剤×1，ダイセン水和剤×1</td>
</tr>
<tr>
<td>16</td>
<td>キャベツ</td>
<td>オルトララ精剤×1，ハクサップ水和剤×2，ランネット水和剤×1，ダイボール水和剤×1，アクテリック乳剤×1</td>
</tr>
<tr>
<td>17</td>
<td>タマネギ</td>
<td>ダイアジノ乳剤×1，トップシンM水和剤×1，ダイセン水和剤×1</td>
</tr>
</tbody>
</table>

（注）1，5，7，11，13作は農薬散布予定区および無散布区とも農薬は使用しなかった。

試 験 結 果

1. 作物の生育・収量

農業散布区における冬作のキャベツ，レタス，タマネギおよび春作のキャベツコロッカの収量とその分散分析結果をそれぞれ第5，6表に示した。冬作は各作とも化学肥料・牛ずん堆肥栽培区が化学肥料単用区と同等かそれ以上の収量であった。一方，菜種油粕単用区の収量についてみると，1作目のキャベツは化学肥料単用区の50%程度にとどまったが，3作目のレタス，5作目と13作目を除くタマネギでは化学肥料単用区と同等の収量が得られた。また，牛ずん堆肥単用区の収量については，キャベツおよびレタスは他区より著しく劣っていたが，タマネギは6作の平均値は化学肥料単用区と同等の値を示した。しかし，その収量は作付年次ごとの変動が大きく，化学肥料単用区以上の収量が得られる場合もあるが，逆に著しく低下する場合もあった。
第5表 冬作物（キャベツ、レタス、タマネギ）の収量（kg／10 a、農薬散布区の3地点平均）

<table>
<thead>
<tr>
<th>区</th>
<th>名</th>
<th>1作</th>
<th>2作</th>
<th>3作</th>
<th>4作</th>
<th>5作</th>
<th>6作</th>
<th>7作</th>
<th>8作</th>
<th>9作</th>
<th>11作</th>
<th>13作</th>
<th>15作</th>
<th>17作</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>連作供試区</td>
<td>3043</td>
<td>4235</td>
<td>4253</td>
<td>4676</td>
<td>3387</td>
<td>3094</td>
<td>3381</td>
<td>2728</td>
<td>3466</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>2</td>
<td>化学肥料</td>
<td>2949</td>
<td>5105</td>
<td>3930</td>
<td>4863</td>
<td>3709</td>
<td>4244</td>
<td>3194</td>
<td>2975</td>
<td>4411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(97)</td>
<td>(121)</td>
<td>(92)</td>
<td>(104)</td>
<td>(109)</td>
<td>(137)</td>
<td>(94)</td>
<td>(109)</td>
<td>(127)</td>
<td>(113)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>蔬種油糖単用区</td>
<td>1584</td>
<td>4168</td>
<td>3609</td>
<td>4759</td>
<td>3598</td>
<td>3139</td>
<td>2512</td>
<td>2716</td>
<td>3700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(52)</td>
<td>(98)</td>
<td>(85)</td>
<td>(102)</td>
<td>(106)</td>
<td>(101)</td>
<td>(74)</td>
<td>(100)</td>
<td>(107)</td>
<td>(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>牛ぶん堆肥単用区</td>
<td>777</td>
<td>2478</td>
<td>3031</td>
<td>4953</td>
<td>2373</td>
<td>4243</td>
<td>988</td>
<td>2188</td>
<td>4368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(26)</td>
<td>(59)</td>
<td>(71)</td>
<td>(106)</td>
<td>(70)</td>
<td>(137)</td>
<td>(29)</td>
<td>(80)</td>
<td>(126)</td>
<td>(98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注1：1作はキャベツ、3作はレタス、他作はタマネギ
注2：平均は5、7、9、11、15、17作のタマネギの平均値
注3：()内は化学肥料単用区に対する収量比
注4：a、b、cはダックの多重検定による処理間差

第6表 夏作物（キャベツ）の収量（kg／10 a、農薬散布区の3地点平均）

<table>
<thead>
<tr>
<th>区</th>
<th>名</th>
<th>2作</th>
<th>4作</th>
<th>6作</th>
<th>8作</th>
<th>10作</th>
<th>12作</th>
<th>14作</th>
<th>16作</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>連作供試区</td>
<td>4988</td>
<td>6035</td>
<td>5844</td>
<td>4569</td>
<td>4436</td>
<td>4496</td>
<td>6180</td>
<td>5237</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
</tr>
<tr>
<td>2</td>
<td>化学肥料</td>
<td>5735</td>
<td>6912</td>
<td>5847</td>
<td>4417</td>
<td>4861</td>
<td>6345</td>
<td>6654</td>
<td>5315</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(117)</td>
<td>(115)</td>
<td>(100)</td>
<td>(97)</td>
<td>(110)</td>
<td>(98)</td>
<td>(108)</td>
<td>(101)</td>
<td>(106)</td>
</tr>
<tr>
<td>3</td>
<td>蔬種油糖単用区</td>
<td>3418</td>
<td>3913</td>
<td>2362</td>
<td>1811</td>
<td>2257</td>
<td>5104</td>
<td>5243</td>
<td>3434</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70)</td>
<td>(65)</td>
<td>(40)</td>
<td>(40)</td>
<td>(51)</td>
<td>(79)</td>
<td>(85)</td>
<td>(66)</td>
<td>(62)</td>
</tr>
<tr>
<td>4</td>
<td>牛ぶん堆肥単用区</td>
<td>4435</td>
<td>4342</td>
<td>3651</td>
<td>2590</td>
<td>2821</td>
<td>5609</td>
<td>5047</td>
<td>3778</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(91)</td>
<td>(72)</td>
<td>(52)</td>
<td>(57)</td>
<td>(64)</td>
<td>(87)</td>
<td>(82)</td>
<td>(72)</td>
<td>(72)</td>
</tr>
</tbody>
</table>

注1：()内は化学肥料単用区に対する収量比
注2：a、b、cはダックの多重検定による処理間差

冬作タマネギの収量を同一品種で比較すると、6年間の平均収量は化学肥料・牛ぶん堆肥加用区が化学肥料単用区より13%増加したが、薬糖油糖単用区および牛ぶん堆肥単用区はこれとはほぼ同様であった。

夏作キャベツの収量は各作とも化学肥料単用区と化学肥料・牛ぶん堆肥加用区が同様であった。一方、薬糖油糖単用区の収量は、化学肥料単用区に比較して約15～60%、また、牛ぶん堆肥加用区の収量は同区より約10～50%低かった。夏作キャベツの8年間の平均収量は、化学肥料単用区に比較して、化学肥料・牛ぶん堆肥加用区が約6%増収したのに対し、薬糖油糖単用区は約40%、牛ぶん堆肥単用区は約30%それぞれ減収した。

（2）農薬散布の有無と作物収量

試験期間中の病害虫の発生状況は冬作のレタスが枯乾病、タマネギがびす病と発病および13作目以降のタネバエ、夏作のキャベツは黒腐病とコナガおよびアオムシによる食害が主なものであった。

夏作キャベツについて、それぞれの施設処理区内における農薬散布区の収量を100とした無農薬区の収量比、および面積分析による農薬の有無による有意差を、第7表に示した。化学肥料単用区および化学肥料・牛ぶん堆肥加用区の間には、各作とも無農薬区は明らかに減収する場合が多く、農薬散布区に比較して8～40%減収した。これに対し、薬糖油糖単用区および牛ぶん堆肥単用区の
<table>
<thead>
<tr>
<th>区</th>
<th>区名</th>
<th>2件</th>
<th>4件</th>
<th>6件</th>
<th>8件</th>
<th>10件</th>
<th>12件</th>
<th>14件</th>
<th>16件</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>化学肥料単用品</td>
<td>64※</td>
<td>89</td>
<td>86※</td>
<td>86</td>
<td>88</td>
<td>74※</td>
<td>96</td>
<td>68※</td>
<td>81</td>
</tr>
<tr>
<td>2.</td>
<td>化学肥料・牛ふん堆肥単用品</td>
<td>65※</td>
<td>78※</td>
<td>95</td>
<td>89</td>
<td>86※</td>
<td>60※</td>
<td>92※</td>
<td>85※</td>
<td>81</td>
</tr>
<tr>
<td>3.</td>
<td>混合油肥単用品</td>
<td>49※</td>
<td>110</td>
<td>122※</td>
<td>107</td>
<td>109</td>
<td>61※</td>
<td>96</td>
<td>111</td>
<td>96</td>
</tr>
<tr>
<td>4.</td>
<td>牛ふん堆肥単用品</td>
<td>32※</td>
<td>100</td>
<td>111</td>
<td>101</td>
<td>104</td>
<td>81※</td>
<td>94</td>
<td>99</td>
<td>90</td>
</tr>
</tbody>
</table>

注：※はランクの多重検定により、農薬散布区に対して有意差の認められた処理区

2. 土壌の性状の変化

（1）土壌pHおよび塩基の経年変化

土壌のpHおよび塩基の変化は第1図に示した。牛ふん堆肥単用品のpHは、5年目では徐々に上昇し、5年目で6.8程度に大きな変化はなかった。一方、他の3区は年次ごとに変化がみられたものの、全体として徐々に低下する傾向があった。全体を通じて土壌のpHは牛ふん堆肥単用品、変種油和単用品、化学肥料・牛ふん堆肥単用品、化学肥料単用品の順に低下した。

石灰飽和度は化学肥料単用品、化学肥料・牛ふん堆肥単用品、化学肥料・牛ふん堆肥単用品、変種油和単用品で試験開始を通じて低下傾向にあったが、ほぼ50%まで低下し、変種油和単用品は経年的に低下傾向を示した。一方、牛ふん堆肥単用品区を除き、経年的に上昇傾向を示し、17作終了時には約100%となった。石灰飽和度は全体を通じてpHと同様に牛ふん堆肥単用品、変種油和単用品、化学肥料・牛ふん堆肥単用品、化学肥料単用品の順に低下した。

カリ飽和度は、牛ふん堆肥単用品区では経年に上昇傾向にあったが、他の3区は9年目までは年次ごとの変動が大きく、それ以降はほぼ一定となった。17作終了時のカリ飽和度は牛ふん堆肥単用品区が最も高く、化学肥料・牛ふん堆肥単用品、変種油和単用品の順に低下し、変種油和単用品の順に低下した。

（2）土壌のCECの経年変化

化学肥料単用品および変種油和単用品のCECは同様の傾向を示し、年次増減による変化は小さくほぼ20meq内外で経過した。また、化学肥料・牛ふん堆肥単用品はこれより常に20～30meq程度高く推移し、年次変化は小さかったのに対し、牛ふん堆肥単用品は経年的に増加傾向を示し、17作終了時には約30meqまで高まった。

（3）土壌の可給態塩分含量の経年変化

化学肥料単用品および変種油和単用品の両区の可給態塩分含量は同様な変化を示し、当初110g当たり20mg程度であったが、徐々に増加し、17作終了時には約50mgとなった。また、化学肥料・牛ふん堆肥単用品は5年目まではそれらの2倍程度の値に上昇し、以降ほぼ一定の値を推移し、17作終了時には約75mgとなった。一方、牛ふん堆肥単用品区は経年的に著しく増加し、17作終了時には約250mgとなった。

（4）土壌の全塩素および全窒素含量の経年変化

全塩素含量は化学肥料単用品では約0.8％で全期間を通じてほぼ一定であった。化学肥料・牛ふん堆肥単用品および変種油和単用品の両区は、経年的に徐々に増加する傾向を示した。一方、牛ふん堆肥単用品区は経年に著しい増加傾向を示し、17作終了時には約3％となり、変種油和単用品の4.6倍となった。17作終了時の全塩素含量の変化の関係は牛ふん堆肥単用品、化学肥料・牛ふん堆肥単用品、変種油和単用品、化学肥料単用品の順に低下した。

全窒素含量の変化は全塩素のほぼ同様の傾向が認められた。化学肥料単用品区は0.06％程度で経年変化はほとんど認められなかったのに対し、化学肥料・牛ふん堆肥単用品および変種油和単用品区は経年的にやや増加する傾向を示した。一方、牛ふん堆肥単用品区は経年に著しく増加し、17作終了時には約0.32％となり、化学肥料単用品の約5倍となった。17作終了時の全窒素含量の変化の関係は牛ふん堆肥単用品、化学肥料・牛ふん堆肥単用品、変種油和単用品、化学肥料単用品の順に低下した。

（5）土壌の可給態塩素含量の経年変化

化学肥料・牛ふん堆肥単用品および変種油和単用品の
第1図 土壌の化学性の経年変化
（成分は乾土当たりで表示した）

- 化学肥料単用区
- 化学肥料・牛ふん堆肥加用区
- 茄苳油粕単用区
- 牛ふん堆肥単用区
第8表 土壌の物理性（作物収穫後の作土層）

<table>
<thead>
<tr>
<th>区</th>
<th>名</th>
<th>作数</th>
<th>現地容積重 (g/100g)</th>
<th>固相率 (%)</th>
<th>液相率 (%)</th>
<th>気相率 (%)</th>
<th>体積比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.化学肥料単用区</td>
<td>1作</td>
<td>115</td>
<td>44.1</td>
<td>33.6</td>
<td>22.3</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15作</td>
<td>123</td>
<td>47.4</td>
<td>32.3</td>
<td>20.3</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>2.化学肥料 +</td>
<td>1作</td>
<td>118</td>
<td>45.3</td>
<td>34.5</td>
<td>20.2</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td>牛ふん堆肥加用区</td>
<td>1作</td>
<td>120</td>
<td>46.1</td>
<td>33.6</td>
<td>20.2</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15作</td>
<td>121</td>
<td>46.4</td>
<td>34.0</td>
<td>19.6</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td>3.稲穂油粕単用区</td>
<td>1作</td>
<td>117</td>
<td>44.8</td>
<td>30.7</td>
<td>24.4</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15作</td>
<td>109</td>
<td>42.1</td>
<td>34.2</td>
<td>23.7</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>4.牛ふん堆肥単用区</td>
<td>1作</td>
<td>84</td>
<td>32.3</td>
<td>38.1</td>
<td>29.6</td>
<td>67.7</td>
<td></td>
</tr>
</tbody>
</table>

両区の可燃気体素含量は、土壌100g当たり4 〜 5 mg程度で全期間を通じて大きな変化は認められず。また、化学肥料単用区は経年的にやや減少する傾向を示した。これに対し、牛ふん堆肥単用区は経年的に著しく増加し、17作終了時には約168 mgとなり、化学肥料単用区のほぼ6倍となった。17作終了時の可燃気体素の量的な関係は牛ふん堆肥単用区、化学肥料・牛ふん堆肥加用区、稲穂油粕単用区、化学肥料単用区の順に低下した。

6.土壌のバイオマス炭素含量の経年変化

0.1N水酸化バリウムで抽出される多糖類をバイオマス炭素とし、土壌100g中の炭素量で表示した。化学肥料単用区、化学肥料・牛ふん堆肥単用区および稲穂油粕単用区の3区は年次変動が大きく、このうち、化学肥料単用区は経年的に含量が減少する傾向を認めた。一方、牛ふん堆肥単用区は経年的に著加傾向を示し、17作終了時には土壌100g当たり約9 mgとなり、化学肥料単用区の5.5倍となった。17作終了時のバイオマス炭素含量の量的な関係は、牛ふん堆肥単用区、化学肥料・牛ふん堆肥加用区、稲穂油粕単用区、化学肥料単用区の順に低下した。

3.土壌の物理性

1作および15作収穫後の作土層の土壌の物理性を第8表に示した。牛ふん堆肥単用区は、他区に比較して1作後から現地容積重および固相率がやや低下し、孔隙率が高い傾向にあり、15作収穫後はさらにこの傾向が顕著になった。15作後の同区の現地容積重は化学肥料単用区より35%程度低下し、逆に孔隙率は30%程度高まり、土壌は堅固となった。これに対し、他の3処理区は試験開始初期ほどとんど変化が見られなかった。このように有機資材の多量施用は、化学肥料だけでなく、土壌の物理性に対しても著しい変化を与えることが明らかとなった。

4.肥料の種類と土壌溶液

1986年の6月17日より開始された土壌溶液のイオン分析およびその種々変化を第2表に示した。土壌溶液中の陰イオンと陽イオンは、各処理区とともに等量存在し、両者がバランスを取りながら変化した。

土壌溶液中のイオン精度は土壌では経時に減少する傾向を示したが、下層では9月21日付近により120mm

第9表 土壌溶液のECと陰イオンの関係

<table>
<thead>
<tr>
<th>目的変数</th>
<th>説明変数</th>
<th>重相関</th>
<th>剩余相関</th>
<th>無相関</th>
<th>重相関</th>
<th>剩余相関</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (EC)</td>
<td>X1(NO3-)</td>
<td>Y = 0.116X1 + 0.074X2 + 0.118</td>
<td>0.995</td>
<td>0.990</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X2(SO42-)</td>
<td>Y = 0.098X1 + 0.112X2 + 0.070</td>
<td>0.997</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X3(CI-)</td>
<td>Y = 0.119X1 + 0.058</td>
<td>0.994</td>
<td>0.989</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>牛ふん堆肥単用区</td>
<td>Y = 0.101X1 + 0.109X2 + 0.252</td>
<td>0.993</td>
<td>0.985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
の降水量があったため、上層の養分が下層に溶脱し、9月2日または9月24日に一旦土壌に回収され、減少する傾向が認められた。また、イオン濃度は土壌水分との関係があるため厳密な比較は出来ないが、葉実油料単用区は下層ともイオン濃度が最も低かった。

つきに、肥料の種類が土壌溶液組成に及ぼす影響を明らかにするため、土壌溶液のECと陰イオンの関係を重回帰式を用いて検討した。計算には農林水産省農業技術研究所のプログラムを用いた。その結果を第9表に示し、土壌溶液ECに寄与する陰イオンとしては、化学肥料を施用した処理区は硝酸と硫酸。葉実油料単用区は硝酸、牛ふん堆肥単用区は硝酸と硫酸、尿素が上げられ、施肥の違いが土壌溶液の組成を変化させることが明らかとなった。また、土壌の可給態りん酸含量が著しく高い値を示した牛ふん堆肥単用区（第1図）は、土壌溶液中のりん酸濃度も高い傾向を示した。

考察

1. 肥料の種類と作物収量

キャベツ、レタスおよびタマネギ等の宿田野菜の収量は、キャベツでは化学肥料施用区が葉実油料および牛ふん堆肥単用区より少な、葉実油料の肥効はレタスおよびタマネギでは化学肥料と同等であり、牛ふん堆肥の肥効はレタスでは化学肥料より劣ったが、タマネギでは年間により異なることが確認された。したがって、有機質肥料や有機質土壌の施用効果は作物の種類によって異なるものと考えられる。また、13作目のタマネギは葉実油料単用区、牛ふん堆肥単用区で減収程度が大きかったが、これについては牛ふん堆肥単用区は虫害が最大の原因であるが、品種の違いも関係していると推察される。

葉実油料の窒素の無機化率は60～80％とされている。そのため、葉実油料単用区の化学肥料に対する収量比は、窒素吸収力の多いキャベツではほぼこの無機化率に相当したものに対し、窒素吸収力の少ないタマネギでは、化学肥料との収量差が大きかったものと考えられる。したがって、葉実油料でキャベツなどの窒素要求の高い野菜を栽培する場合は、窒素の肥効度を考慮して施用すれば収量はさらに向上するものと考えられる。

有機質肥料の効果については、米澤が施設および施設野菜で長時間検討し、施設野菜では無機肥料に劣るものの、施設野菜では大幅に増収することを報告している。さらに、米澤は培養試験により有機質肥料の窒素の無機化率を検討し、土壌水分の影響は小さく、また、

第2図 土壌溶液組成とその経時変化（1986年）
土壌溶液採取日 A：8月28日、B：9月6日
C：9月24日、D: 10月13日
E: 10月30日
温度の影響は8週間後になくなることも報告されている。そのため、このような土壌環境要因による有機質肥料の効果の違いは、地温の差異の影響もある。有機質肥料は土壌溶液中のイオン濃度を高めにくく、また土壌に残る酸性の大部分が酸化であることから、施設土壌では菌類数値を軽減する効果が大きいことによると考えられる。

一方、有機質肥料の窒素の無機化率はC/N比に規制され、この値が20以上の時に有機化が起こることが知られている4,19）。本試験で使用した牛ふん堆肥のC/N比は、第2表に示したようにほぼ15であることから、資材の質としては問題ないものである。6）の報告例がないが、志賀16）は田中における有機物の分解を検討し、この程度のC/N比をもつ乾燥牛ふんの連用により、10年間で約80%の窒素が無機化し、さらに、堆肥の窒素の無機化量は田中より高めが多いことを報告している。また、堆肥と化学肥料を少量化した処理により、栽培の収量は初期には低下するものの、3年目以降は増収するとの報告がある6）。しかし、本試験では牛ふん堆肥の窒素の肥効を30%としたものにかかわらず、9年間の連用ではキャベツについては化学肥料に相当する収量を確保することは困難であった。

人森14）らは家畜ふんの多量施用の試験結果から、牛ふんの10キロ当たり100トンの連用では、作物の生育は良好であることを報告している。一方、松崎10）は土壌の理化学性から検討し、牛ふんの連用は10キロ当たり10トン、年間20トンを限界量と報告している。本試験では牛ふん堆肥を利用し、施用量は毎年10トン程度であったが、化学肥料に相当する収量を確保するには、さらに施用量を増やす必要があります。しかし、これは松崎10）が指摘している施用限界量を超過する懸念があるとともに、資材の確保や施用労力が困難であるばかりでなく、堆肥であってもその多量施用は環境汚染を引き起こす危険性もある。

このようなことから、化学肥料を使用しない栽培の可能性を検討すると、家畜ふん堆肥など有機質資材を適量

第10表 発病度と植物体の窒素含量

<table>
<thead>
<tr>
<th>区</th>
<th>名</th>
<th>レタス(1980年、3月目)</th>
<th>キャベツ(1980年、4月目)</th>
<th>タマネギ(1982年、7月目)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>酶核病</td>
<td>T-N (%)</td>
<td>酶核病</td>
</tr>
<tr>
<td></td>
<td></td>
<td>発病度</td>
<td>外葉</td>
<td>紙球</td>
</tr>
<tr>
<td>1</td>
<td>化学肥料散布</td>
<td>4.0</td>
<td>4.03</td>
<td>4.63</td>
</tr>
<tr>
<td>2</td>
<td>未施</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>化学肥料・未施</td>
<td>3.7</td>
<td>4.23</td>
<td>5.06</td>
</tr>
<tr>
<td>4</td>
<td>未施</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>化學肥料</td>
<td>0</td>
<td>3.06</td>
<td>4.10</td>
</tr>
<tr>
<td>6</td>
<td>未施</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>牛ふん堆肥</td>
<td>0</td>
<td>2.29</td>
<td>2.61</td>
</tr>
<tr>
<td>8</td>
<td>未施</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

発病度については宇田川16）の成績を利用した。

注）1：多：球全体に発病(1)、中：葉の1/2以上発病(2)、少：葉のみ発病(3)、無：発病なし(0) 発病度＝Σ T/N × 100
2：多： BALL (3)、中：中間発病(2)、少：発病なし(1)、無：発病なし(0) 発病度＝Σ T/N × 100
3：多：葉全体に発病(3)、中：葉の1/2以上発病(2)、少：発病なし(1)、無：発病なし(0) 発病度＝Σ T/N × 100
4：全窒素含量は乾物当たりで表示した。
施用し、窒素の肥効が高い菜種油粕などの有機質肥料を併用することが得策と考えられる。

2. 農薬散布の有無と作物収量

無農薬による作物の減収程度は肥料の種類によって異なる傾向が認められた。窒素の肥効が高い化学肥料施用区は、無農薬では収量が低下するのに対し、肥効がやや劣る菜種油粕および牛ぶん堆肥単用区では、無農薬でも収減しないものと推察された。しかし、2, 12区に見られるように、有機質肥料を施用しても無農薬では著しく収減する傾向があり、収量は細菌の発生程度により大きく影響されるようであった。また、有機物の多量施用は特定の害虫の発生を促すことが認められ、タマネギでは13作目で、有機物を多量に施用した牛ぶん堆肥甲用区においてタマネギの発生が著しく、欠株が多くなって収減した。そのため、15, 17作では定植時に殺虫剤を使用しなければならなかった。

本試験において野菜の病害の発生状況を野田京 (18) が調査しており、その結果と植物体の窒素含量の関係について第10表に示した。キャベツ黒腐病の発生は化学肥料単用区が最も少なく菜種油粕単用および牛ぶん堆肥単用区で発生が多く、化学肥料・牛ぶん堆肥加用区がその中間であった。これに対してレタス菌核病とタマネギさび病は、これとは逆に化学肥料単用区が最も多く、菜種油粕単用区および牛ぶん堆肥単用区が少ない。化学肥料・牛ぶん堆肥加用区がその中間的な傾向があった。

これを植物体の窒素含量との関係でみると、タマネギでは明確でないが、レタス菌核病は植物体の窒素含量が高い方が発病度が高く、逆にキャベツ黒腐病は外葉の窒素含量が高い方が発病度が低い傾向にあり、肥料の種類や量との関連で興味がもたれた。

しかし、病害害の発生程度は作付け年次、作期、作物、品種等により異なるので、有機物施用との関係についてはさらに検討が必要がある。

なお、この試験では収量を主体に検討したが、無農薬ではキャベツについては食害により外観が悪く、商品性が劣ることは明らかであり、食味なども含めた品質についてはさらに検討する必要である。

3. 肥料の種類と土壌の理化学的性状

無機、有機質肥料の施用による土壌の理学的変化は、牛ぶん堆肥単用区において顕著であった。すなわち、同区の石灰酸和度、カリ酸和度、可燃性炭素、全炭素、全窒素含量は、ともに年々的に増大することが明らかであった。これは牛ぶん堆肥の施用量を窒素量で規定したことから、毎作10アール当たり約10トン程度の多量の有機物が投与されるため、資材に由来するこれらの成分が土壌中に蓄積されるものと考えられる。

さらに、同区の土壌の物理的性質は、現地容積重と固相率が低下し、逆に孔隙率が高まり、土壌が膨脹し、有機物の多量施用は土壌の物理性を短期間に改善する有効な手法と考えられる。

土壌塩基については毎年1回調整が行われ、菜種油粕単用区と牛ぶん堆肥単用区は、試験期間中その材料をまったく施用する必要がなかった。それにもかかわらず、牛ぶん堆肥単用区でpHの変化は小さかったものの、石炭酸和度は年々高まり、資材からの供給量の大半が明らかであった。菜種油粕単用区はこれと異なり、肥料からの供給量が少ないことから、それに見合った作物生育となり、養分の吸収や溶出が少なく、アルカリ性因子の補給の必要がなかったものと考えられ、一方、化学肥料を施用した両区の場合は、土壌の塩基量が低下したため、毎年石灰、石膏の補給が必要であり、土壌管理の面で対応が異なかった。

また、化学肥料・牛ぶん堆肥加用区は化学肥料単用区に比較して、可燃性炭素、全炭素、全窒素および可燃性窒素含量がやや高く推移し、これらの地力要因に対し牛ぶん堆肥の施用効果がみられ、現在一般的に普及している栽培方法の合理性が確認された。

牛ぶん堆肥単用区における土壌の可燃性窒素およびバイオマス炭素含量も他の成分同様に年年ともに増大傾向があった。JENNISON (5) は、水酸化カリウムで抽出される多糖類を、土壌中のバイオマス由来のものとしているが、近年より正確なバイオマス炭素を測定する手法が紹介されている (9)。本法で測定した値はそれよりかなり低い値と考えられるが、牛ぶん堆肥を多量に施用した場合は土壌中の微生物量も著しく増大することを示唆している。

第12表に土壌の全炭素、全窒素、可燃性窒素およびバイオマス炭素間の相関係数を示した。これらの成分間には、極めて有意性の高い正の相関関係が認められた。この点については、すでに著者らは (20)，淡色黒ポクトの例で報告しているが、バイオマス炭素は、本土壌においても地力要因の有力な指標となることが明らかとなった。

しかし、このような直接回帰式は既報の淡色黒ポクトとはやや異なっていた。本土壌における可燃性窒素との他の成分の直接回帰式は次のとおりである。
第11表 主要な成分間の相関係数（n = 36）

<table>
<thead>
<tr>
<th>項目</th>
<th>全窒素</th>
<th>可溶窒素</th>
<th>可溶態窒素</th>
</tr>
</thead>
<tbody>
<tr>
<td>全窒素</td>
<td>0.997**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>可溶態窒素</td>
<td>0.960**</td>
<td>0.953**</td>
<td></td>
</tr>
<tr>
<td>バイオマス炭素</td>
<td>0.941**</td>
<td>0.928**</td>
<td>0.959**</td>
</tr>
</tbody>
</table>

注：**は危険率1%で有意

可溶態窒素を評価する幾つかの手法が報告されており、本法はそれらに比較しても有効性があると考えられる。そのため、氷酸化バリウム抽出法で、バイオマス炭素の相関を計測するには問題があることが分った。一方、窒素の濃度は測定が簡単で、有効な手法であると考えられる。

以上のように、施肥が土壌の物性質に及ぼす影響としては、牛糞堆肥単用区が顕著であった。土壌に対する有機物の施用は地力の維持、増強に欠くことができないが、有機物の多重養施用により土壌を短期間に急激に改善することについては議論が別れてある。土壌養分、保肥力や可溶態窒素などの土壌の肥沃度を向上させるには、有機物の多重施用が効果的な面もある。反面、家畜の飼養の多重施用は、土壌の環境を破壊し、環境汚染の懸念があるとともに、松崎（19）は乾燥時に作物が害を受ける危険性があることを指摘するなど、問題点が残されている。

また、岡島（19）は土壌溶液の濃度はイオンの濃度に支配されることを報告している。このことは、菌系の寄生が第2図に示したように、土壌溶液のイオンの体が硝酸であるため土壌に酸根を残存させない、窒素が堆肥効果を相殺することを可能にし、土壌溶液濃度を高めにくく、有機質肥料の利点を上げることができる。しかし、牛糞堆肥の多重施用は、土壌に由来すると考えられる塩分が土壌中に蓄積し、特に施設では土壌溶液濃度を高める要因となる可能性があるため、注意が必要である。

有機質肥料、有機質資材の効果野菜の生育収量および土壌の理化学的特性に及ぼす影響等を総合的に考察すれば、作物の種類、栽培地を考慮すれば、有機質肥料を用いず、最少限の農薬使用で栽培が可能であると考えられる。また、有機物の種類、施用量等によっては、土壌の理化性に好影響を与えうるとともに、その持続性が示唆される。

したがって、肥料の施用から有機農業を実践する場合には、有機物の施肥を増強し、増強肥料の効果をも最大限に引き伸ばすために、それぞれの施肥を対ずる資材を使えばよいか否かで使用する必要があると考えられる。また、栽培年次や作物、品種および作期等により、病虫害の発生が異なると考えられるので、病虫害防止や生物防害についても検討する必要がある。

なお、有機農業と作物の品質の関係については、最も関心の高いところでもあるが、この点については現在試験中であり、改めて報告する予定である。

摘 要

有機質肥料と無機質肥料の施作が、作物生育および地力要因に及ぼす影響を検討し、以下の知見を得た。

1. 有機、無機肥料の施肥は作物の種類により異なり、作物の収量は化学肥料施作区が有機肥料より高く、無機肥料が不利であるが、マメ類では年次により異った。
2. 化学肥料施作区は無機質で養分が減退したが、有機質肥料および牛糞堆肥単用区では農業散布した場合に収量に差がないことが多かった。
3. 土壌のpHは、牛糞堆肥単用区が6.8程度で安定していたのに対し、化学肥料施作区、化学肥料・牛糞堆肥加用区および乾燥施用区は、経年に低下する傾向にあった。
4. 土壌の石灰およびK2O含油は、乾燥施用区で平均的に高まった。
5. 土壌のCEC（土壌の微細粒子）も乾燥施用区で平均的に高まり、化学肥料・牛糞堆肥加用区にやや高い水準となった。
6. 土壌の全窒素を、全窒素を含量は、牛糞堆肥単用区が年次的に増加したのに対し、化学肥料施作区は、期間を通じて変化がなかった。
7. 土壌の可溶態窒素およびバイオマス炭素含量は、牛糞堆肥単用区が、年次的に増加したのに対し、化学肥料施作区はやや減少傾向にあった。
8. 土壌の全窒素、全窒素、可溶態窒素およびバイオマス炭素の間には、相互に有意性の高い正の相関関係があり、バイオマス炭素含量は地力窒素の指標と
9. 牛ぶん堆肥単用区の土壤の物理性は大きく変化し、容積重および固相率が低下し、孔隙率が高まって土壤が膨散となった。
10. 肥料の種類により土壤溶液の陰イオン組成は変化し、化学肥料施用区は硝酸と硫酸酸、栄養油粕単用区は硝酸が、牛ぶん堆肥単用区は硝酸と塩素イオンが陰イオンの主体となった。
11. 以上より、有機農業は収量と肥料の観点からみて、有機質肥料や有機質資材を併用することによって可能になるものと考えられた。

引用文献

1) 赤塚 恵・坂戸助夫(1964): 北海道農試実験場報告, 83, 64–70
2) 有吉佐和子(1979): 複合汚染, 新潮社
4) 広瀬直朗(1973): 里肥誌, 44, 157-163
6) 神奈川県農業総合研究所(1977): 昭和51年度 有機農業に関する試験成績書
7) 神奈川県農政部(1979): 病害虫雑草防除基準
8) 河内 宏・鈴木大助(1983): 土壌肥料試験研究のための統計計算用BASICプログラム, 農業技術研究所化学部資料, 第1号, 23-34
9) 丸本卓哉(1984): 土壌のバイオマス土壌生物の量と代謝一, p.115–165博友社
10) 松崎敏英(1977): 神奈川農総研報, 118
12) 農林水産省農産品芸芸部農産課編(1976): 土壌環境基調査における土壌、水質及び作物分析法
14) 大森嘉次・杉本正行・小倉 功(1977): 神奈川農試 研報, 24, 69–79
15) 作物分析法委員会編(1976): 栄養診断のための栽培植物分析測定法, p.289, 豊栄堂
16) 志賀 一(1985): 総合農業研究叢書 第5号, p. 8–28 農業研究センター
18) 宇田川 島(1984): 昭和58年度 病害虫関係試験成績概要
19) 山田 裕・鎌田春海(1980): 神奈川県農試総合研究所土壌肥料関係試験研究成績, 12, 1-9
20) 山田 裕・鎌田春海(1987): 神奈川農総研報, 12 9, 29–37
21) 末澤茂人(1983): 全農農業技術センター特別研究報告, 第1号

SUMMARY

Effects of successive applications of organic or chemical fertilizer on the growth of vegetables and soil fertility were examined to evaluate the agriculture using organic fertilizer alone in 1978–87.

The yields of cabbage were higher in the chemical fertilizer plot than in the rapeseed meal and cow dung compost plots. The response of rapeseed meal for lettuce and onion was the same as that of chemical fertilizer. The response of cow dung compost for lettuce was inferior to that of chemical fertilizer, and the yields of onion in the cow dung compost plot were different yearly. The yields of cabbage decreased in the chemical plot without the application of agricultural chemicals, whereas the yields of cabbage in both the rapeseed meal and the cow dung compost plots did not differ, regardless of the application of agricultural chemicals.
The pH values were about 6.8 in the cow dung compost plot, whereas those in the chemical fertilizer alone plot, the chemical fertilizer plot with cow dung compost and the rapeseed meal plot decreased as time passed. The degrees of Ca– and K–saturation in cow dung compost plot gradually increased yearly. The cation exchange capacity and the amount of available phosphate in the cow dung compost plot increased as time passed. Those in the chemical fertilizer plot with cow dung compost were maintained at slightly high level. The amount of total C and N in the cow dung compost plot increased as time passed, whereas those in the chemical fertilizer plot were constant during the experimental period. The amount of available N, and biomass C extracted by barium hydroxide in the cow dung compost plot increased as time passed, whereas those in the chemical fertilizer alone plot decreased as time passed. There was a high correlation among the total C, the total N, the available N, and the biomass C, and the biomass C was regarded as an effective index for the amount of the available N.

Physical properties, especially volume weight and solid phase ratio in the cow dung compost plot decreased, whereas porosity increased. Main anions of soil solutions in the plots of chemical fertilizer, rapeseed meal, and cow dung compost were NO$_3^-$ and SO$_4^{2-}$, NO$_3^-$, and NO$_3^-$ and Cl$^-$, respectively.

From the results obtained it is suggested that the agriculture using organic fertilizer alone is more effective by using organic fertilizer together with organic soil conditioner.