短報

新幹線鉄道騒音の簡易推定手法の構築について

横島潤紀，田村明弘

(環境技術部，横浜国立大学大学院)

重点基礎研究[平成20年度]

1 はじめに

1964年に開通した東海道新幹線は日本最初の高速鉄道として利便性を向上させてきた反面，通過車両から発生する騒音，振動及び低周波音が現在でも問題となっている。騒音に関しては，1975年に「新幹線鉄道騒音に係る環境基準について」が告示され，測定方法や評価指標が定められている。

近年，騒音や振動に係る法令や基準を考慮した上で，emission（排出）とimission（暴露）という概念が用いられている1）。前者は発生源からの騒音の排出量に着目したものであり，騒音規制法が該当する。一方，後者は騒音による住民への影響の程度やその状況に着目したもので，環境基準が定められている。平成11年度に施行された「騒音に係る環境基準について」では，imissionの概念を導入した評価が明示されているもので，「新幹線鉄道騒音に係る環境基準について」は依然としてemissionとして適用されていることが多く，本来の趣旨とは異なったままである。したがって，新幹線騒音についても，個々の住宅における騒音の暴露評価の導入を進めていることが今後必要である。しかし，このような実測評価を行うことは現実的には困難であるから，新幹線騒音を簡易に推定できるシステムの構築が不可欠となる。本研究では，神奈川県内における東海道新幹線を対象として，新幹線列車通過時の騒音レベルの推定を試みる。

2 鉄道総研の新幹線騒音予測評価手法の適用性

列車通過時の新幹線騒音の予測手法に関しては，鉄道総合技術研究所から平成11年に提案されている2）。この予測手法（以下，総研方式）はエネルギー・ベースに基づくもので，理論式に実測データを加味して構築されている。

最初に，平成13年11月から平成15年12月の期間に神奈川県内の東海道新幹線沿線で測定したデータを用いて，この総研方式の適用可能性について検討を行った。評価指標は通過列車ごとの騒音レベルの最大値とした。検証に用いたデータは総研方式の適用範囲等を考慮し，表2の条件に該当するデータは除外した。その結果，検証に用いたデータのサンプル数は1368となった。表2は検証データの内訳を示したものである。本報では，防音壁の種類は，吸音処理をしていない遮音版が設置されている場合を直型，干渉型の防音壁に設置されている場合をラムダ型，直型あるいはラムダ型の防音壁に吸音処理している遮音版をかさ上げしている場合を改良型とした。また，距離は総研方式に合わせて，上下線の軌道中心を起点とする距離とした。

表1 検証から除外したデータの条件

<table>
<thead>
<tr>
<th>検証</th>
<th>除外データ</th>
<th>原因</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北側</td>
<td>露出部の影響</td>
</tr>
<tr>
<td>2</td>
<td>南側</td>
<td>同上</td>
</tr>
</tbody>
</table>

表2 検証データの内訳

<table>
<thead>
<tr>
<th>構築物</th>
<th>高架構造区間</th>
<th>盛土構造</th>
</tr>
</thead>
<tbody>
<tr>
<td>防音壁</td>
<td>直型区間</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>ラムダ型区間</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>改良型区間</td>
<td>400</td>
</tr>
<tr>
<td>車両形式</td>
<td>300系車両</td>
<td>693</td>
</tr>
<tr>
<td></td>
<td>700系車両</td>
<td>675</td>
</tr>
<tr>
<td>通過速度</td>
<td>160km/h - 200km/h</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>200km/h - 219km/h</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>220km/h - 249km/h</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>251km/h - 270km/h</td>
<td>336</td>
</tr>
<tr>
<td>距離</td>
<td>14.5m以上 - 20m未満</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>20m以上 - 40m未満</td>
<td>596</td>
</tr>
<tr>
<td></td>
<td>40m以上</td>
<td>362</td>
</tr>
</tbody>
</table>

図1〜図3は，防音壁の種別に，実測値と総研方式による推定値との関係を構築物別に示したものである。残差（実測値 - 推定値）の絶対値の平均値は，直型区間で3.8dB，ラムダ型区間で1.5dB，改良型区間では2.1dBとなった。また，残差の標準偏差や実測値と推定値の相関係数についても，総研方式は適用対象となっている直型区間での精度が最も良かった。これらから，総研方式をそのまま適用するよりは，何かの補正を加える必要があると考えられる。
3 総研方式の改良

本研究では、残差に影響を及ぼす要因の大きさを把握することにより、総研方式を補正する方法で推定手法の精度向上を検討した。残差を目的変数とし、表3に示す7個の要因を説明変数として重回帰分析を行った。分析結果は表3に示すとおりである。標準化係数で比較すると、距離の影響が最も強いことがわかる。距離の係数がマイナスになっていることは、距離が遠くなると、建物による騒音の超過遮蔽により、推定値に比べて実測値が小さくなるためであると考えられる。

表3 重回帰分析の結果

<table>
<thead>
<tr>
<th>防音壁要因</th>
<th>非標準化係数</th>
<th>標準化係数</th>
<th>有意</th>
<th>重相関</th>
</tr>
</thead>
<tbody>
<tr>
<td>直型</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>構造物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過軌道</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>車両形式</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軌道高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>距離</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>防音壁高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>走行速度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ムータ型</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>構造物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過軌道</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>車両形式</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軌道高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>距離</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>防音壁高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>走行速度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>改良型</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>構造物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過軌道</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>車両形式</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>軌道高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>距離</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>防音壁高さ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>走行速度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

有意確率のりは 、 は を示す。

総研方式の推定値に、表3で得られる重回帰式の結果を加算することにより、総研方式を補正する方法（改良方式）が可能となる。平成16年の2月～3月の測定データ（サンプリング数116）について、総研方式と改良方式による推定値と実測値との対比をそれぞれ図4、図5に示す。
図4 総研方式の推定値と実測値との対応（1980年）

図5 改良方式の推定値と実測値との対応（1980年）

図中の相関係数（R）の数値からも、改良方式による精度が向上していることがわかる。
本研究では新幹線列車通過時の騒音レベルの推定手法について検討してきたが、今後もデータを蓄積して精度の向上を図っていきたい。

参考文献
[橋] 秀樹：環境行政に期待する，騒音制御，1980年，
□□□□□
[長倉 清] 喜田康雄，橋 秀樹：新幹線騒音の予測
評価手法について，音響学会騒音振動研究会資料，
□□□□□□□□□□